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ON THE CONVERGENCE OF CLOSED-VALUED

MEASURABLE MULTIFUNCTIONS

BY

GABRIELLA SALINETTI AND ROGER J.-B. WETS

Abstract. In this paper we study the convergence almost everywhere and in

measure of sequences of closed-valued multifunctions. We first give a number of

criteria for the convergence of sequences of closed subsets. These results are used

to obtain various characterizations for the convergence of measurable multifunc-

tions. In particular we are interested in the convergence properties of (measurable)

selections.

1. Introduction. Let (ñ, d) he a measure space with d the class of measurable

sets and meas a nonnegative sigma-finite measure defined on & ; (E, d) is the

metric space obtained by equipping R " with the metric d. A map T with domain il

and whose values are subsets of F is called a multifunction; its effective domain is

dom r = {« G ß|r(w) =^=0}. It is said to be closed- (compact-, convex- . . .) val-

ued, if its values are closed (compact, convex,. . . ) subsets of F. A closed-valued

multifunction T is measurable if for all closed subsets F of F we have that

r-'(F) = {<oGfl|r(<o)n f^0) Ed. (l.i)

We write T~X(F) E d for all F G <5 where <5 is the hyperspace of the closed

subsets of F. Let S (% resp.) denote the hyperspace of open (compact resp.)

subsets of F. It can be shown that when T is closed-valued, T is measurable if and

only if any one of the following equivalent conditions is satisfied:

(ï)T'\G)E d for all G G S;

(ii) r- X(K) G d for all K G %;

(in) T~ x(B°(x)) G d for ail e > 0, x G F where B°(x) is the open ball of radius e

and center x;

(iv) T~ x(Be(x)) G d for all e > 0, x G F where Be(x) is the closed ball of radius

e and center x;

(v) T admits a Castaing representation, i.e. dom T E d and there exists a

countable collection {vk}k°_x of measurable functions from dom T to E such that

for all w in dorn T,

cl

00

U vk(o>)
k-l

= 1». (1.2)
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If d is complete then V is measurable if and only if its graph {(«, x)\x E T(w)} is

an (d ® $ )-measurable subset of ß X F where % is the Borel algebra on E. For

these and related results, cf. [1] or [2].

Every multifunction T can be identified with a function y from ß into 9 =

<3'(E), the power set of F. If the multifunction is closed- (compact- resp.) valued,

then y can be viewed as a function from ß into 5" (% resp.). Let 5 be the topology

on 3F generated by the subbase consisting of the families {9*, # G 5C} and {FG,

G t= a ) wnere

£*= {F G 9\F n F = 0)    and    ffc = {F G ^|F n G *= 0}.

The class of subsets of the form

$£,.Gji = 3* n %t n • • • r\%m (1.3)

for n > 0 yields a base for the topology ST. The same topology 9 is also generated

by the subbase consisting of the families

{S*(jt), e > 0, x G F}    and    {9^^ e > 0, x G F}. (1.4)

This follows directly from the properties of F. The topological space (9, 9") is

compact, Hausdorff and second countable (cf. [3] and also [4]).2 The choice of this

topology for 9 is motivated by the fact that 9"-convergence corresponds to the

natural (standard) convergence of sequences of closed sets in F and also with this

topology, the measurability of T corresponds to the measurabihty of the corre-

sponding function y.

Let © be the Borel algebra on 9 generated by the elements of the base of the

topology 5y. Actually ©^ can be generated from the family of sets {9g, G G § }.

To see this simply observe that the space {9, 5"} is second countable and that the

elements (1.3) of the base of 5" can be obtained as complements and countable

intersections of the elements in {9G). From the properties of E, it also follows that

the Borel algebra %9 can be generated by any one of the families {§*, K G %},

C&blXx)' e > 0, x G F} and {5*'w, e > 0, x E E). A function y from ß to § is

measurable if y~x(D) E d for every D in %9

Proposition 1.1. Suppose that T is a closed-valued multifunction from ß to E and

y is the associated function from ß to 9. Then T is measurable if and only if y is

measurable.

Proof. For any open set G c F, we have that

y~x(%) = Hy(to) G %) = HI» n G * 0} = T~\G).

The measurability of y implies that for all G in §, y~\<$G) G d and consequently

r~ '(G) G d, which in turn implies the measurabihty of T. One argues the converse

similarly.   □

2Professors Carl Eberhart (Kentucky) and James West (Cornell) pointed out that the space (9, !T) is

homeomorphic to the Hubert cube. Let Ex be a one point compactification of E and (9M, °V) the

hyperspace of closed subsets of Ex equipped with the "Vietoris finite topology." The map /"-»/' (F) —

F u {oo} is an embedding from € into Wx with image [F e 9X\9 D {»)} - X. The assertion now

follows from the classical result of Curtis and Schori [5].
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In [6] and [7] the measurability of a multifunction T is defined in terms of the

measurability of the associated function y when T is nonempty compact-valued. In

this case the range of y is %' = % \ {0} and the topology % is generated by the

Hausdorff distance. This topology is finer than the ^T-relative topology on %'; it is

generated as follows: Let ?TK be the Vietoris topology on %, i.e. that generated by

the subbase consisting of the families of sets {%F, F E 9) and {%G, G G §}.

Then 9h is the ^-relative topology on5C'. The Borel algebra on %', consistent

with 9h is denoted by %h; it can be generated by any one of the families {%'F),

{%G}, {%'B-M} and {%¿o(x)}. A function y from ß to %' is measurable if

y~x(D) G d for every D G irj^.. A proof similar to that of Proposition 1.1 yields

the following:

Proposition 1.2. Suppose that T is a nonempty compact-valued multifunction from

ß to E and y is the associated function from ß to %'. Then F is measurable if and

only if y is 'S),,-measurable.

A different proof of this proposition appears in [2].

In this paper we are basically interested in studying the stochastic convergence of

sequences of measurable multifunctions (set-valued random variables). We limit

ourselves to almost everywhere (sure) convergence and convergence in measure

(probability); convergence in distribution will be dealt with in a follow-up to this

article. We are particularly interested in the convergence properties of (measurable)

selections.

2. Convergence of sequences of closed sets. We already alluded to the relation

between convergence of sequences in (9, ?T) and the classical notion of conver-

gence for sequences of closed subsets of 9, due to Painlevé; the connection is made

exphcit in Theorem 2.2. Let A denote a countable index set (typically the natural

numbers); we reserve M to denote an infinite (ordered) subset of A. A sequence of

sets {C„ c F, n G A} converges to a (necessarily closed) set C, written C = lim C„

if

li Cn = C = lsCn (2.1)

where

li Cn = {x G F|x = lim x„, x„ G C„ for all n > nx)

and

Is C„ = {x G E\x = lim xm, xm E Cm for all m G Mx).

The sets // C„ and Is C„ are clearly closed. Also note that, since li Cn c Is C„, to

prove convergence of the sequence {C„, n E A} to C it always suffices to show

that

KCCC H Cn. (2.2)

We need also to consider the set-theoretic notions of lim inf and lim sup of a

sequence of sets {C„, n G A} ; we denote these by Li C„ and Ls C„, respectively.
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We write C - Lim C„ if Ls C„ = C = Li C„, where
00

Li C„ = U    fi Cm (2.3)
"-1   m>n

and
00

Ls C„ = H    U Cm. (2.4)
,1=1    m>n

The connections between the topological and set-theoretic notions of limits of

sequences of sets is clarified by the following relations:

00 oo

Li C„ c H Cn = n Li k~xCn = fi Li(cl k~xC„)
k-\ k-i

-ñün c\k-xc„= ñ di ü n «**-<    (2.5)
k=l    n=l    m>n fc-1 n-1    m>n

and

Ls C„ c fa C, = n  cl( [J Cm\ (2.6)
n-l       \m>n       I

where by cl A  we denote the closure of the set A G E and eA  is an open

e-neighborhood of the set A defined as follows: if A is nonempty then

eA = {x E E\a\x, A) < e) (2.7)

where d(x, A) = inf[d(x,y)\y G A] and £</> = F \ Fe-,(0).

We start with a characterization of convergence to the empty set that is exploited

repeatedly in the proof of Theorem 2.2.

Lemma 2.1. Suppose that (F„, n G A} is a sequence of closed subsets of E. Then

Urn F„ = 0 if and only if to each K, there corresponds an index nK such that

F„ n K = 0 for all n > nK. Equivalently, if and only if to each e > 0 and x G E,

there corresponds n(e, x) such that F„ n Fe(x) = 0 for all n > n(e, x).

Proof. The equivalence between these two assertions follows directly from the

nature of F.

First, suppose that lim Fn = 0 but there exists K such that xm G Fm n K ¥= 0

for all m G M c A. The infinite sequence {xm, m G Ai} c K admits a cluster

point which belongs to Is F„, contradicting the hypothesis that lim F„ = 0.

Since // F„ c Is Fn, to prove the only if part it will suffice to show that Is F„ = 0.

Suppose not and take x E Is Fn with x = lim{xjxm G Fm, m E A/}. Now, let K

be a compact neighborhood of x. Then xm G K n Fm for m sufficiently large and

hence there is no nk such that K n F„ = 0 for all n > nk.   □
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Theorem 2.2. Suppose that {F; F„, n G A} is a collection of closed subsets of E.

Then F = 9"-lim F„ if and only if both part (a) and part (b), of any one of the

following statements, are satisfied:

(ij ifFr\G¥=0 then F„ n G * 0 for all n > nG,

(ib) if F n K = 0 /Aen F„ n FJ = 0/or a// n > n*;

(iij i/Ffl B°(x) =t 0 then Fn n B°(x) ¥= 0/or a// n > n(e, x),

(iib) ifFn Be(x) = 0 iAen F n Fe(x) = 0/or all n > n'(e, x);

(iiij for all x in E, lim sup d(x, F„) < d(x, F),

(iiib)/or all x in E, d(x, F) < lim inf d(x, F);

(ivj lim(F \ eF„) = 0 for all e > 0,

(ivb) lim(Fn \ eF) = 0 for all e > 0;

(vj F n F,(x) c eF„ /or any x G F and for all e > 0, r > 0 vv/iA n > n(e, r, x),

(vb) F„ n Fr(x) c eF for any x G F and for all e > 0, r > 0 »vi/A n > n'(e, r, x);

(vij F c lim^ li(Fn n Br(x))for any x E E,

(vib) A/n^ /j(F„ n Fr(x)) c F/or any x G F;

(viij F c A F„,

(vüb) fa F„ c F.

Proof. The equivalence between ?T-convergence in 9 and (i) follows im-

mediately from the base structure of ?T. Thus to prove the theorem it suffices to

establish the equivalence between (i) and the other statements. We will assume that

F is nonempty; if F = 0 the equivalence is either trivial or requires a straightfor-

ward apphcation of Lemma 2.1. We prove the rest in two parts, we show first that

all (a) statements are equivalent; this is done by obtaining the following string of

implications:

(viij => (vij => (va) => (ivJ => (uij => (iij => (ij => (viij.

(viia) => (vij. Take any y G F C li F„, i.e. y = km{y„, n G N\y„ G F„). Now fix

any x in F. For n sufficiently large and r > d(y, x), yn G F„ n Fr(x) and thus

y G li(F„ n Br(x)) E lim^ A(Fn n Br(x)).

(vij => (vj. Fix any x in F. If y G F n Br(x) then with j = r + e, e > 0, there

exists y'n G F„ n F^(x) such that y = limJÎ00 lim„ >>„'. In particular this means that

there exists n(e, s, x) such that ysn G F„ n Bs(x) c F„ and d(y,y'n) < e for all

n > n(e, j, x), i.e. 7 G eF„ for all n > n(e, s, x).

(vjí^íivj. Fix x in F. Now apply Lemma 2.1, more precisely the second

version of the assertion, to the sequence (F \ eFn, n E N).

(ivJ => (iiij. For the sake of the argument suppose that (iiij does not hold. Then

there exists x G F, e > 0 and M e N such that d(x, Fm) > d(x, F) + 2e for ail

m E M or, equivalently, d(x, eFm) > d(x, F) + e. It follows that {y\d(x,y) =

d(x, F)} c fa(F \ eFn), which contradicts (ivJ.

(iiij => (nj. Note that lim sup d(x, Fn) < d(x, F) holds only if for all e > 0 with

d(x, F) < e we have that d(x, Fn) < e for n sufficiently large, or, equivalently, only

if F n B°(x) 7* 0 implies that Fn n Fe°(x) = 0 for n sufficiently large.
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(iiJ =* (ij. Simply note that the properties of F allow us to write every open set

as the countable union of open balls.

(iJ => (viiJ. Take x E F and { G„ / G / } a fundamental (nested) system of open

neighborhoods of x with G, D F. Clearly, for all i in I, G, n F # 0. Now, (ij

implies also that G, n F„ ¥= 0 for n > n, and thus there exists xn G F„ such that

x = lim xn. Hence F c li Fn.

Next we prove that the (b) statements are equivalent. But this time we derive the

sequence of implications in the opposite order, i.e.

(viib) => (ib) -» (iib) => (iiib) => (ivb) => (vb) => (vib) => (viib).

(viib) => (ib). Suppose not. Then there exists a compact K such that F n K = 0

but for Fm n K =?*= 0 for all m E M c A. Every sequence {xm G Fm n K) admits

a convergent subsequence, say to x. By definition x G F n fa F„ c F n F, a

contradiction.

Ob) =s> (üb). Evident.

(iib) => (hib). Since d(x, F) > e if and only if F n Bt(x) = 0, which in view of

(iib) implies that F„ n Be(x) = 0, or equivalently, i/(x, F„) > e for n sufficiently

large. From this (iiib) follows directly.

(iiib) =» (ivb). Suppose not. Then fa(F„ \ eF) =£ 0, i.e. there exists {xm E Fm\ eF,

m E M} such that lim xm = x G fa(F„ \ eF). On one hand we have that for all

m E M, e < d(xm, F) < d(x, F) + d(x, xm) and thus d(x, F) > e — ¿(x, xm); on

the other hand d(x, Fm) < d(xm, Fm) + d(x, xm). Via (iiib), this implies that 0 =

lim inf d(x, Fm) > d(x, F) > e — 0, a contradiction.

(ivb) => (vb). Apply Lemma 2.1 to the sequence {F„ \ eF, n G A}.

(vb) => (vib). Fix any x G E. Since for all e > 0, r > 0 there exists n(e, r, x) such

that for all n > n(e, r, x), F„ n Fr(x) c eF, it follows that fa(F„ n Fr(x)) c eF.

This holds for every e > 0, and since fa(F„ n Br(x)) is closed, we also have that

ls(Fn n Br(x)) c F from which the assertion follows directly.

(vib) => (viib). If y E Is Fn then there exists {ym E Fm, m E M c A} such that

y = lim.ym. Now fix any x E 9 and let s > d(y, x); then.ym G (Fm n Bs(x)) for w

sufficiently large. Thus.y G ls(Fm n Bs(x)) c limiToo fa(Fm n B,(x)) E F.    \J

Parts of this theorem can be derived directly from the results of Choquet [3] and

Michael [4]; cf. also [8]; it remains vahd in a more general setting, viz. when F is

locally compact, Hausdorff and second countable. More specialized results can be

derived for sequences of closed convex sets; see [9].

Corollary 2.3. Suppose that {F;F„,n E N} is a collection of closed subsets of E.

Then the following are equivalent:

(i) F = er-iim F„,
(ii) F = lim F„,

(in) for all x E F, d(x, F) = lim d(x, Fn),

(iv) lim[(F \ eF„) u (F„ \ eF)] = 0 for all e > 0,

(v) F = //m4oo ls(Fn n Br(x)) = lim^ li(Fn n Br(x)),for any x G F.
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Proof. These are simply reformulations of some of the statements appearing in

the theorem if we remember that for any sequence of sets we always have that

// C fa and for any sequence of numbers lim inf < lim sup.    □

3. Convergence almost everywhere (surely). A sequence of closed-valued measur-

able multifunctions {Tn, n E N} converges almost everywhere (a.e.) to a multi-

function T if for almost all to G ß, the closed sets Tn(ui) converge to the closed set

T(u), more precisely if meas{w G ß|A'w Tn(u) ¥= T(u)} = 0. We write Tn —* T a.e.

Note that meas is nonnegative but not necessarily bounded; if meas is a probability

measure we write Tn —» T a.s.

Theorem 3.1. Suppose that {T; Tn, n E N) is a collection of closed-valued measur-

able multif unctions. Then both u \-* (li Tn)(u) and w f-» (fa T„)(u) are closed-valued

measurable multif unctions.

Proof. They are clearly closed-valued; hence it suffices to show that they are

measurable. In view of (2.5) for every w we have

oo

(// r„)(w) = n ci
k-\

oo

u n(ci*-T,»)
„=\    m>n

Thus (li Tn) is the countable union and intersection of multifunctions of the type

cl k~'r„, and, hence, to prove that li Tn is measurable it remains only to show that

a h» cl k~xTn(u>) = {x\d(x, r„(w)) < A:-1} is a measurable multifunction. But this

follows from the fact that (x, w) (-* d(x, Tn(u)) is continuous in x and measurable

in to, a so-called Carathéodory function, and consequently the multifunction

w h» A(w) = {(x, t/) G F X F|n > d(x, r„(w))} is closed-valued and measurable.

Now simply note that for F any closed subset of F we have that

(cl k-xTnyl(F) = A-'(F X [0, AT1]) G A.

To prove that fa Tn is measurable, we show that for F, an arbitrary closed set, from

(2.6) we have that
00

(farj-'(F)= nLsr-^-'F). (3.1)
*-l

For k = I, 2, .. . we always have that

(lsTn)-x(F)ELsT;x(k-xF) (3.2)

and thus (3.1) will be established if we show that
oo

n Ls Y-\k-xF) c (fa r„)-'(F). (3.3)
k = 1

But this follows from the inclusion

\k-xF)E(lsYnyX

and the fact that for any closed-valued multifunction T,

Ls T;l(k-XF) c (fa rn)~'(cl k~xF)

r-'(F) = n T-x(c\k~xF).   □
k-i
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Corollary 3.2. Suppose that {Tn, n E N) is a sequence of closed-valued mea-

surable multifunctions converging almost everywhere to a multifunction T. Then T is a

closed-valued measurable multifunction on$l\A where meas(A = {w|r„(«) -t* T(<o)})

Proof. For every w G ß \ A, we have that (fa Tn)(u>) = T(u) = (li r„X") and

thus the assertion follows directly from the theorem.    □

Corollary 3.3. A closed-valued mutifunction T is measurable if and only if it is

the limit of a sequence of simple closed-valued measurable multifunctions.

Proof. A closed-valued multifunction is simple if it takes on only a finite number

of values. From Theorem 3.1 we know that the limit multifunction of any sequence

of closed-valued measurable multifunctions is itself closed-valued and measurable.

The only if part will be argued later when a stronger result is obtained (Proposition

4.4).   □

In [10, Theorems 2.6, 2.7], M. Sion derives a related result for partitionable

multifunctions defined on uniform spaces.

The next theorem yields various characterizations of almost sure convergence in

terms of specific "test" families of subsets of F or ß. Given [A¡, i G /} a collection

of elements of d, we write A¡ E0A (A E0A¡ resp.) for all i G I, if there exists a

(fixed) set A0 G d with meas A0 = 0 such that A¡ E A u A0 (A c A¡ u A0 resp.)

for all i E I.

Theorem 3.4.  Suppose that  {T;r„, n G A}  is a collection of closed-valued

measurable multifunctions from ß to E. The following are equivalent statements:

(i)Tn^Ta.e;

(ii) for any compact set K c F and any open set G c K,

Ls IT"'(F) C0 IT-»(F)    and   T~\G) c0 Li ^(G);

(iii) for any e > 0 and x E E,

r-'(F°(x)) Co Li T;x(B:(x)) c Ls T;x(Bt(x)) C0 T-x(Bt(x));

(iv)/or any e > 0, r > 0 and x G F,

U ((rm\er) u(r\erjr'íFfx))
m>n

(v) there exists A G d with meas A = 0 such that for all x E E and w G ß \ A,

lim d(x, r») = d(x, T(<o));

(vi) there exists A G d with meas A = 0 such that for all x E E and u E ß \ A,

lim fa(r„(co) n Br(x)) E 1» c Um A'(r» n Fr(x)).
/"foo r\co

Proof, (i) «=> (ii) «=> (hi). Almost everywhere convergence implies the existence of

a set A with meas A = 0 such that for every u E ß \ A, T(u) = lim T„(w). Restrict-

ing the r„ and F to ß \ A, we know from Theorem 2.2(i) that the closed sets Tn(u)

converge to T(to) if and only if for every open set G and every compact set K:

w G r_1(G) implies that w G r~'(G) for n > nG and w G T~X(K) implies that

lim meas = 0;
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loi r„" X(K) for n > nK, or, equivalently, if and only if the inclusions of (ii) are

satisfied. The same argument, but relying this time on Theorem 2.2(h), establishes

the equivalence between (i) and (iii). The inclusion Li r~'(Fe°(x)) c Ls T~x(Be(x))

is always valid.

(i) «=> (v) <=> (vi). These are clearly direct consequences of the equivalence between

statements (ii), (iii) and (vi) of Corollary 2.3.

(i) <=> (iv). In view of statements (vii) and (iv) of Theorem 2.2 and Lemma 2.1, the

measurable multifunctions Tn converge almost everywhere to T if and only if there

exists a set A G d, meas A = 0, such that for every e > 0, r > 0 and x E E there

corresponds n(e, r, x) such that [(1? \ er„) u (r„ \ er)](w) n Br(x) = 0 for all n >

n(e, r, x). Let

wn(e, r, x) - {« e ß| JU((F v rfJ u (rm \ er))(fao] n *,(*) + &)■

The sets W„(e, r, x) are measurable and thus so is W(e, r, x) = Lim W„(e, r, x).

Now, we have that T = lint Tn a.e. if and only if for all r > 0,

meas(ur-i Uxeo W(k~x, r, x)) = 0 where D is a countable dense subset of E,

or, equivalently, if and only if for all r > 0, k = 1, . . . and x E D,

meas(W(k~x, r, x)) = 0 or still, if and only if for all r > 0, e > 0 and x E E,

meas(W(e, r, x) = Lim Wn(e, r, x)) = 0, but this holds if and only if

lim meas Wn(e, r, x) = 0.    □

As can be easily gathered from the proof the somewhat weaker statement (iv')

also implies almost everywhere convergence:

(iv') for any e > 0 and x G F and some r > 0,

lim meas \JiiTm\eT)uiT\eTm))-xiBrix)) = 0.

Corollary 3.5. Suppose that {/;/„, n E N) is a family of measurable functions

from ß to R. Thenf = lim/„ a.e. if and only if for every r¡ E Rwe have that

{<o G ß|/(w) < r,} Co Li{<o G ßl/» < t,} (3.4)

and

Ls{« G ß|/» < t,} c0 (fa) G ß|/(w) < r,}. (3.5)

Proof. Apply criterion (ii) of Theorem 3.4.   □

4. Convergence of measurable selections. We turn next to finding conditions that

will guarantee the convergence of measurable selections. A measurable function v

from ß to F is called a measurable selection of (the measurable multifunction) T if

v(u) G T(w) for all u> G dom T. The basic theorem on measurable selections,

already referred to in the introduction, asserts that a multifunction T is measurable

if and only if T admits a Castaing representation, i.e. dom TEA and there exists a

countable collection of measurable selections {vk, k G A'} such that for all

«o G dom T, cl{ U k vk(a)} = r(w).
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Theorem 4.1. Suppose that {Tn, n G A} is a collection of closed-valued measur-

able multifunctions from ß to E converging almost everywhere to the closed-valued

measurable multifunction T such that for all n, dom Tn = dorn T. Then there exist

Castaing representations {vk, k E N'} of the Tn such that for each k in A',

vk = lim vk a.e. on dom T and {vk, k E A'} is a Castaing representation ofT.

Proof. The theorem is trivially true if meas(dom T) = 0. Let us thus assume-

without loss of generality-that dom T = dom Tn = ß, meas fi > 0 and that r(to)

= lim r„(ío) for every w in fi. Since the topology on (F, d) is metric invariant we

may also assume that d is the Euclidean distance.

Let Qp be the points with rational coordinates in F where p is the dimension of

F. Let

A = {ak = iax, 4 . . ., aCx), k E N'\a'k G Q",

(a1, . . ., a£+1) affinely independent},

and for any closed set F c F, define

"proj'V% = Mp+X,

where for / = 1, . . . ,p,

Mi+X = {x G A/,|</(a¿ x) = 0(4, M)}

and A/, = F. Then "proj"F ak is a singleton unless F is empty, in which case it is

also empty. Note also that f "proj'V av, k G A') is dense in F.

Let

»„.*(«) = "Pr°J"r„<u)«*>       k E N',   and   vkiu) = "proj"r(i))at.

By construction, the [vnk, k G A'} [{vk, k G A'}] are Castaing representations of

the T„ [T resp.] provided the functions u i-> vnk(u) [u v-* vk(u)] are measurable. But

this follows from the repeated application, p + 1 times, of the fact that if A is a

closed-valued measurable multifunction from fi to F and y G F, then the multi-

function

(o H+ projA(u>y = {x G A(u)\diy, x) = diy, A(«))}

is closed-valued and measurable. To see this, simply note that the function

(w, x) H» d(x,y) — d(y, A(u)) = q(u>, x) is measurable in w and continuous in x;

thus the multifunction w f-> (x|#(fa), x) = 0} is measurable and so is projA(u).y =

A(w) n {x\q(u, x) = 0}. To complete the proof simply observe that for all k E N'

and for all u G fi, the sequence {v„k(u), n G A} converges to vk(u). This is a

direct consequence of Theorem 3.4(v) since (almost everywhere) convergence of the

r„ to T implies that (almost everywhere) the sequence {d(a\, r„(w)), n G A}

converges to d(ak\ r(to)), and by construction, d(ak, rn(w)) = d(a\, vnk(ui)) and

d(ax, vkio)) = dial, 1»).   D

Corollary 4.2. Suppose that {T„, n G A} is a sequence of closed-valued mea-

surable multifunctions converging almost surely to a closed-valued measurable multi-

function T. FAen there exist measurable selections of Tn converging to a measurable

selection ofT.
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From the convergence of Castaing representations of the Tn to a countable

collection of measurable functions {vk, k G A'} it does not follow that the Tn

converge to the closed-valued measurable multifunction F where F(fa>) =

cl{ U k vkia)}, not even when the Tn and F are convex-valued. To see this, consider

the following simple example: Let rn(w) = [0, 1] for all w G fi and all n. Take a

Castaing representation of Tn with the following properties: w t-> v„ kiu) piecewise

constant with v„kiu) < \ if k < n. Let vk = lim vnk, necessarily 0 < vk < {-. Thus

F = cl[ U k vk] c [0, i], whereas lim Tn(fa>) = [0, 1] for all w in fi.

Note that F C T, since vkiu) = lim vnkiu) c A cl{ U k «„,*(")} = A T„(fa>) c

T(fa)). The reverse inclusion would be valid if fa cl{ U k v„kio>)} C cl{ U k vkiu)}. In

order for this to hold, i.e. to derive a converse Theorem 4.1, we need at least the

uniform convergence of the Castaing representations. But it is not always possible

to find selections that exhibit uniform convergence, as is evident from the following

example: Let fi = ]0, 1], r„(w) = inw)~x; then v„i<u) = r„(fa>) is the only selection

and hm vn = v = 0 = T = lim T„. Clearly there are no measurable selections con-

verging uniformly to 0. However any measurable selection of the limit multifunc-

tion T can he obtained as the limit of a sequence of measurable selections of the

r„; this is the content of the next theorem.

Theorem 4.3. Suppose that {T„, n G A} is a sequence of closed-valued measurable

multifunctions from fi to E converging almost everywhere to the closed-valued

measurable multifunction V. Suppose also that v is a measurable selection of T; then

there exist measurable selections {vn, n G A) of the multifunctions {T„, n E A} such

that almost everywhere v = lim v..

Proof. Let F„(fa>) = projr Mvico). The multifunctions T'n are closed-valued, mea-

surable and nonempty-valued whenever r„(fa>) is nonempty; cf. proof of Theorem

4.1. Any sequence of measurable selections vn of F„, n G A, has the desired

characteristics. This follows from Theorem 3.4(v) and the fact that ¿(u(fa>), Tico)) =

0.   □

This theorem allows us to give an enlightening proof of Corollary 3.3. We are

obviously only concerned with the only if part of the statement. Suppose that T is a

closed-valued measurable multifunction and for n = 1, 2, . . . , let T„ = T n F„(0).

Each r„ is a uniformly bounded compact-valued measurable multifunction and

T = Urn r„. As in the proof of Theorem 4.1, for each Tn we build a Castaing

representation {u^, k G A'}. Each u^ is measurable and necessarily bounded. Let

{vnk, k G A„'} = U m<„{umk, k E N'}. This is also a Castaing representation of T„

with the following properties:

(i) K*, * S A;} c {v„ik, k G A;} if », < n2, and

(ii) the multifunctions {Uy<* vnJ, k G A„'} converge uniformly-with respect to

the Hausdorff distance A-to the uniformly bounded multifunction Tn.

Each bounded measurable selection vnk is in turn the uniform limit of a sequence

of measurable simple functions, say {v^,, l G L^}. Let A^, = U y<* vnJl. This is a

simple finite-valued measurable multifunction and, obviously, for each fa> G fi we

have that r(w) = lim„ lim^ lim, A^ioS). (By finite-valued we mean that the range of
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the multifunction, i.e. { Uu A^fa))}, consists of a finite number of points, which is

a stronger restriction than having r(w) of finite cardinality for each « G fi.) Since

the {A,^,} converge uniformly to {UJ<k vnJ} which in turn converge uniformly to

r„, we can rely on the standard diagonalization argument to find a sequence of

multifunctions {Ankj, n G A} that converge to T. This argument allows us to state

a stronger version of Corollary 3.3.

Proposition 4.4. A closed-valued multifunction is measurable if and only if it is the

limit of a sequence of simple finite-valued measurable multifunctions.

5. Almost uniform convergence and convergence in probability. Henceforth we

shall assume that meas is a probability measure. Let (T; Tn, n G A} be a collection

of closed-valued multifunctions from fi to F. We say that the Tn converge uniformly

to T on a set A G d if to every x G F and every pair e' > e > 0 there corresponds

an index n(e', e, x) such that for all n > nie', e, x),

r-'(Fe°(x)) n^fc r; ■(*;(*)) n a (5.1)

and

A \ T" '(*,(*)) CAW '(Fe(x)). (5.2)

This definition is motivated by criterion (ii) of Theorem 2.2. In particular, it follows

that the sequence [T„, n G A} converges uniformly to T = 0 on A if to every

e > 0 and x E E there corresponds n~(e, x) such that T ~ '(Fe(x)) = 0 for all

n > n(e, x).

If, in addition, the Tn and T are measurable, we say that the Tn converge almost

uniformly if given S > 0, there is a set fis G d with meas(fiÄ) > 1 — S such that the

r„ converge uniformly to T on fis. We then write Tn -» T a.u.

Theorem 5.1. Suppose that meas fa a probability measure and {T; r„, n G A} is a

collection of closed-valued measurable multifunctions. Then Tn -> T a.s. if and only if

T„^T a.u.

Proof. Clearly almost uniform convergence imphes almost sure convergence. By

definition, the sequence Tn converges (uniformly) on fi0 = U "_, ß*-> with

meas fi^ > 1 — A:-1 and meas fi0 > meas[Limt(Uf_i ß,->)] = 1. To prove the

other direction we proceed as follows: As in the proof of Theorem 3.4, for e > 0,

r > 0, x G F let

Wnie, r, x) = ifa, G fi|[ (J ((F \ erj u (Tm \ er))(W)l n B,ix) * 0\.
\ L m>n \ )

From Theorem 3.4(iv) we know that Tn -> T a.s. if and only if for all e > 0, r > 0

and x G F, lim meas W„ie, r, x) = 0. In particular, if A; is any positive integer we

have that lim meas Wnik~x, r, x) = 0, i.e. given 5 > 0, there exists ñ"(ó\ A:-1, r, x)

such that meas W„ik~x, r, x) < 8/2k for all n > ñ. Let

00

Vir,x)= U Wsik-\r,x).
k-\
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Then meas K(r, x) < S and define fis = fi \ F(r, x). If w G fifi then

oo

wG n (Q\ WAk-x, r, x)),
k = 1

i.e.   for   all   n > n(5, k~x, r, x),   <ô G fi \ Wnik~x, r, x),   since   the   sequence

Wnik~x, r, x) is monotone nonincreasing (in n). This means that for all n > ñ,

(r„\r'r)(i)ni)fW = 0 (5.3)

and

(r\k-lTm)(jü)nB,ix)-0. (5.4)

Now assume that u G r_l(F°(x)) n fifi and for the sake of the argument, let us

assume that for some k, there is no ñ (r' = r + k~x, r, x) such that w G T~'(Fy(x))

n fifi for all n > ñ. This means that there exists M c A-detennining a subse-

quence-such that to G r~'(F°(x)) for all m E M or equivalently, for all m G M,

k~xTmiu¡) n Fr(x) = 0, from which it follows that for all m G M,

(r \ Ar-'rm)(fa)) n Fr(x) = r(w) n Fr(x) * 0,

which contradicts (5.4).

Similarly, if w G fis \ r_1(Fy(x)), and for ail m G M c A, w G flfi \ T"'(.ff/x)),

we have that

(rm \ A:-'r)(fa.) n *,(*) = r» n Fr(x) # 0,

and then (5.3) is contradicted.    □

Theorem 5.1 is a version of Egorov's theorem; it raises an interesting question.

The relationship between the closed-valued measurable multifunctions from fi to F

and the measurable functions from fi to 9 suggests yet another approach to the

derivation of Egorov-type results. Again let p be a metric on W compatible with ?T,

the measurable functions y„ converge almost uniformly to the measurable function

y if given e > 0, there exists a set fic G d with meas(fie) > 1 — e and on ßt, the y„

converge uniformly (with respect to the metric p) to the function y. With this

definition, we can then rely on the standard version of Egorov's theorem to obtain

the equivalence of almost sure and almost uniform convergence. Passing to the

associated multifunctions, via Proposition 1.1, would yield an Egorov theorem for

multifunctions. Such an approach is of interest only if we have a "concrete" version

of the metric p. Although criteria (v) and (vi) of Theorem 2.2 provide us with

quantities that can be associated with the notion of proximity (for two closed sets),

there is, at present, no satisfactory representation of any metric compatible with ÍT.

Theorem 5.1 and the preceding considerations inform us that the definition of

uniform convergence for sequences of multifunctions, introduced at the beginning

of this section, provides a characterization of p-uniform convergence for functions

with values in \W. Is this the best possible, in the sense that a minimal class of

"test"-sets are involved in the definition?

Finally, let us observe that the above lead us to a natural definition of conver-

gence in probability. Let

Kn = (r- ^eT) u (r \ er„).
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From Corollary 2.3(iv) we know that for any fixed to,

r(co) = Urn r„(fa>) if and only if for all e > 0, lim A„ „(w) = 0.

This, in terms of the criterion for convergence to the empty set provided by the

Lemma 2.1, can be reexpressed as follows: given r > 0 and x G F, there exists

n(r, x) such that Ae „(w) n Fr(x) = 0 for all n > ñ. In view of this, we may define

convergence in probability as follows: As usual, let {T; T„, n G A} be a collection

of closed-valued measurable multifunctions; then the Tn converge in probability to

T if for all e > 0 and any r > 0, x G F, lim meas(A~n'(Fr(x))) = 0. To see that

almost sure convergence implies convergence in probability, one proceeds as

follows: If the Tn converge almost surely to T then for all e > 0, the AeM converge

almost surely to 0. In view of the preceding theorem this implies that for all e > 0,

the At converge almost uniformly to 0. This means that given any 8 > 0, there

corresponds fis G d with meas fis < 8 and the Ae „ converge uniformly to 0 on

fi \ fifi. In turn this yields, given r > 0, x G F, there exists n5(r, x) such that

(fi \ fifi) n A-„'(Fr(x)) = 0 for all n > ñ, i.e. for all n > ñ, n\easiA~ xiBJ(x))) <

meas fiä < Ô, and thus lim meas A~n'(Fr(x)) = 0 for all e > 0, r > 0 and x E E.

This ends the argument.

Naturally, if the multifunctions Tn are compact-\alued then it is possible to rely

on the Hausdorff distance to find a satisfactory definition of convergence in

probability. In view of the relations between the ?T-topology and the Hausdorff

metric, discussed in §1, it is easy to see that both definitions must coincide when

the multifunctions are uniformly bounded. If the multifunctions Tn, and also T, are

conoex-valued it is possible to characterize convergence in probability in terms of

the r-distance [9]. Let F,, F2 be two closed subsets of F; for r > 0 the r-distance is,

by definition,

0 ifF[=Fr2=0,

Ar(F„ F2) =    + oo if F[ = 0 or Fr2 = 0 but F{ =h Fr2,

where A(Ff, F2) is the Hausdorff distance between F[ and F2 and for any D c E,

Dr = D n Fr(0). With this definition we have that [9, Theorem 4]: Suppose that

{C; Cn, n G A} is a collection of closed convex subsets of E. Then C = Urn Cn if

and only if there exists r0 > 0 such that for all r > r^, lim Ar(C, C„) = 0. This

statement clearly implies Theorem 2.2(vi) but convexity is necessary to get the

converse. It is possible to exploit this result to find, in the convex-valued case, a

criterion for the convergence in probability that does not involve all x in F (or all x

in a dense subset of F). Let co v-* r0(fa)) be a measurable function from ß to R such

that r0(fa)) > dif), T(fa))). Such a function exists (and is finite) whenever T is non-

empty-valued since fa> v~* ¿/(0, Tico)) is measurable. In view of the equivalence of (vi)

and (iv) in Theorem 2.2, and that in the convex case (vi) can be expressed in terms

of the r-distance, when the Tn and T are nonempty convex-valued, we have that the

r„ converge in probability to T if and only if there exists a positive measurable

function r0 such that for all measurable functions co t~* rico) with r(w) > r^co) and

all e > 0, lim meas{fa)|A^(t))(rn(fa)), (to)) > e} = 0. This can be further refined when
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diO, T()) is bounded. It then suffices to check the above for every measurable

function fa) h» rico) such that for all w, rico) > r0, where r0 > sup i/(0, r(w)). But

every measurable function is itself the limit of simple functions; thus in this latter

case (r„ and T convex-, nonempty-valued and </(0, T()) bounded) the Tn converge

to T in probability if and only if there exists r0 > 0 such that for all r > r0 and all

e > 0, lim meas{fa)|Ar(r„(fa)), Tico)) > e} = 0.
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