$C^{\ast }$-extreme points
HTML articles powered by AMS MathViewer
- by Alan Hopenwasser, Robert L. Moore and V. I. Paulsen
- Trans. Amer. Math. Soc. 266 (1981), 291-307
- DOI: https://doi.org/10.1090/S0002-9947-1981-0613797-5
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ be a ${C^ \ast }$-algebra and let $\mathcal {S}$ be a subset of $\mathcal {A}$. $\mathcal {S}$ is ${C^ \ast }$-convex if whenever ${T_1},{T_2}, \ldots ,{T_n}$ are in $\mathcal {S}$ and ${A_1}, \ldots ,{A_n}$ are in $\mathcal {A}$ with $\sum \nolimits _{i = 1}^n {A_i^ \ast {A_i} = I}$, then $\sum \nolimits _{i = 1}^n {A_i^ \ast {T_i}{A_i}}$ is in $\mathcal {S}$. An element $T$ in $\mathcal {S}$ is called ${C^ \ast }$-extreme in $\mathcal {S}$ if whenever $T = \sum \nolimits _{i = 1}^n {A_i^ \ast {T_i}{A_i}}$ with ${T_i}$ and ${A_i}$ as above and with ${A_i}$ invertible, then ${T_i}$ is unitarily equivalent to $T$ for each $i$. We investigate the linear extreme points and ${C^ \ast }$-extreme points for three sets: first, the unit ball of operators in Hilbert space; next, the set of $2 \times 2$ matrices with numerical radius bounded by $1$; and last, the unit interval of positive operators on Hilbert space. In particular we find that for the second set, the linear and ${C^ \ast }$-extreme points are different.References
- William Arveson, Subalgebras of $C^{\ast }$-algebras. II, Acta Math. 128 (1972), no. 3-4, 271–308. MR 394232, DOI 10.1007/BF02392166 Nelson Dunford and Jacob T. Schwartz, Linear operators, Vol. 1, Interscience, New York, 1958.
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Richard I. Loebl and Vern I. Paulsen, Some remarks on $C^{\ast }$-convexity, Linear Algebra Appl. 35 (1981), 63–78. MR 599846, DOI 10.1016/0024-3795(81)90266-4
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 291-307
- MSC: Primary 46L05; Secondary 47D20
- DOI: https://doi.org/10.1090/S0002-9947-1981-0613797-5
- MathSciNet review: 613797