## The topology on the primitive ideal space of transformation group $C^{\ast }$-algebras and C.C.R. transformation group $C^{\ast }$-algebras

HTML articles powered by AMS MathViewer

- by Dana P. Williams PDF
- Trans. Amer. Math. Soc.
**266**(1981), 335-359 Request permission

## Abstract:

If $(G,\Omega )$ is a second countable transformation group and the stability groups are amenable then ${C^ \ast }(G,\Omega )$ is C.C.R. if and only if the orbits are closed and the stability groups are C.C.R. In addition, partial results relating closed orbits to C.C.R. algebras are obtained in the nonseparable case. In several cases, the topology of the primitive ideal space is calculated explicitly. In particular, if the stability groups are all contained in a fixed abelian subgroup $H$, then the topology is computed in terms of $H$ and the orbit structure, provided ${C^ \ast }(G,\Omega )$ and ${C^ \ast }(H,\Omega )$ are $EH$-regular. These conditions are automatically met if $G$ is abelian and $(G,\Omega )$ is second countable.## References

- Lawrence Baggett,
*A description of the topology on the dual spaces of certain locally compact groups*, Trans. Amer. Math. Soc.**132**(1968), 175–215. MR**409720**, DOI 10.1090/S0002-9947-1968-0409720-2 - Robert J. Blattner,
*On induced representations*, Amer. J. Math.**83**(1961), 79–98. MR**125456**, DOI 10.2307/2372722
N. Bourbaki, - Robert C. Busby,
*Double centralizers and extensions of $C^{\ast }$-algebras*, Trans. Amer. Math. Soc.**132**(1968), 79–99. MR**225175**, DOI 10.1090/S0002-9947-1968-0225175-5 - Robert C. Busby and Harvey A. Smith,
*Representations of twisted group algebras*, Trans. Amer. Math. Soc.**149**(1970), 503–537. MR**264418**, DOI 10.1090/S0002-9947-1970-0264418-8 - Jacques Dixmier,
*Les $C^{\ast }$-algèbres et leurs représentations*, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR**0246136** - Sergio Doplicher, Daniel Kastler, and Derek W. Robinson,
*Covariance algebras in field theory and statistical mechanics*, Comm. Math. Phys.**3**(1966), 1–28. MR**205095**, DOI 10.1007/BF01645459 - Edward G. Effros,
*Transformation groups and $C^{\ast }$-algebras*, Ann. of Math. (2)**81**(1965), 38–55. MR**174987**, DOI 10.2307/1970381 - Edward G. Effros and Frank Hahn,
*Locally compact transformation groups and $C^{\ast }$- algebras*, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR**0227310** - David E. Evans and Hiroshi Takai,
*Simplicity of crossed products of GCR algebras by abelian groups*, Math. Ann.**243**(1979), no. 1, 55–62. MR**543094**, DOI 10.1007/BF01420206 - J. M. G. Fell,
*A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space*, Proc. Amer. Math. Soc.**13**(1962), 472–476. MR**139135**, DOI 10.1090/S0002-9939-1962-0139135-6 - J. M. G. Fell,
*Weak containment and induced representations of groups*, Canadian J. Math.**14**(1962), 237–268. MR**150241**, DOI 10.4153/CJM-1962-016-6 - James Glimm,
*Locally compact transformation groups*, Trans. Amer. Math. Soc.**101**(1961), 124–138. MR**136681**, DOI 10.1090/S0002-9947-1961-0136681-X - James Glimm,
*Families of induced representations*, Pacific J. Math.**12**(1962), 885–911. MR**146297**, DOI 10.2140/pjm.1962.12.885 - Elliot C. Gootman,
*The type of some $C^{\ast }$ and $W^{\ast }$-algebras associated with transformation groups*, Pacific J. Math.**48**(1973), 93–106. MR**335681**, DOI 10.2140/pjm.1973.48.93 - Elliot C. Gootman,
*Primitive ideals of $C^{\ast }$-algebras associated with transformation groups*, Trans. Amer. Math. Soc.**170**(1972), 97–108. MR**302818**, DOI 10.1090/S0002-9947-1972-0302818-X - Elliot C. Gootman and Jonathan Rosenberg,
*The structure of crossed product $C^{\ast }$-algebras: a proof of the generalized Effros-Hahn conjecture*, Invent. Math.**52**(1979), no. 3, 283–298. MR**537063**, DOI 10.1007/BF01389885 - Philip Green,
*$C^*$-algebras of transformation groups with smooth orbit space*, Pacific J. Math.**72**(1977), no. 1, 71–97. MR**453917**, DOI 10.2140/pjm.1977.72.71 - Philip Green,
*The local structure of twisted covariance algebras*, Acta Math.**140**(1978), no. 3-4, 191–250. MR**493349**, DOI 10.1007/BF02392308 - F. P. Greenleaf,
*Amenable actions of locally compact groups*, J. Functional Analysis**4**(1969), 295–315. MR**0246999**, DOI 10.1016/0022-1236(69)90016-0
E. Hewitt and K. A. Ross, - George W. Mackey,
*Imprimitivity for representations of locally compact groups. I*, Proc. Nat. Acad. Sci. U.S.A.**35**(1949), 537–545. MR**31489**, DOI 10.1073/pnas.35.9.537 - Marc A. Rieffel,
*Induced representations of $C^{\ast }$-algebras*, Advances in Math.**13**(1974), 176–257. MR**353003**, DOI 10.1016/0001-8708(74)90068-1 - Marc A. Rieffel,
*Strong Morita equivalence of certain transformation group $C^*$-algebras*, Math. Ann.**222**(1976), no. 1, 7–22. MR**419677**, DOI 10.1007/BF01418238 - Marc A. Rieffel,
*Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner*, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43–82. MR**546802** - Marc A. Rieffel,
*On the uniqueness of the Heisenberg commutation relations*, Duke Math. J.**39**(1972), 745–752. MR**412340** - Jean-Luc Sauvageot,
*Idéaux primitifs de certains produits croisés*, Math. Ann.**231**(1977/78), no. 1, 61–76 (French). MR**473355**, DOI 10.1007/BF01360030 - Irwin Schochetman,
*Compact and Hilbert-Schmidt induced representations*, Duke Math. J.**41**(1974), 89–102. MR**333067** - Masamichi Takesaki,
*Covariant representations of $C^{\ast }$-algebras and their locally compact automorphism groups*, Acta Math.**119**(1967), 273–303. MR**225179**, DOI 10.1007/BF02392085

*Intégration*, Chapitre 7, Actualités. Sci. Indust. No. 1306, Hermann, Paris, 1963.

*Abstract harmonic analysis*. I, Springer-Verlag, Berlin, 1963.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**266**(1981), 335-359 - MSC: Primary 46L05; Secondary 22D25, 54H15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617538-7
- MathSciNet review: 617538