Isomorphism theorems for octonion planes over local rings
HTML articles powered by AMS MathViewer
- by Robert Bix
- Trans. Amer. Math. Soc. 266 (1981), 423-439
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617543-0
- PDF | Request permission
Abstract:
It is proved that there is a collineation between two octonion planes over local rings if and only if the underlying octonion algebras are isomorphic as rings. It is shown that every isomorphism between the little or middle projective groups of two octonion planes over local rings is induced by conjugation with a collineation or a correlation of the planes when the local rings contain $\frac {1} {2}$.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Ricardo Baeza, Quadratic forms over semilocal rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, Berlin-New York, 1978. MR 0491773
- Robert Bix, Octonion planes over local rings, Trans. Amer. Math. Soc. 261 (1980), no. 2, 417–438. MR 580896, DOI 10.1090/S0002-9947-1980-0580896-5 —, Separable Jordan algebras over commutative rings, Dissertation, Yale Univ., 1977.
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- John R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Memoirs of the American Mathematical Society, No. 104, American Mathematical Society, Providence, R.I., 1970. MR 0271180
- N. Jacobson, Composition algebras and their automorphisms, Rend. Circ. Mat. Palermo (2) 7 (1958), 55–80. MR 101253, DOI 10.1007/BF02854388
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 238916, DOI 10.1090/S0002-9947-1969-0238916-9 T. Suh, On isomorphisms of little projective groups of Cayley planes, Nederl. Akad. Wetensch. Proc. A65 (1962), 320-339.
- F. D. Veldkamp, Isomorphisms of little and middle projective groups of octave planes, Nederl. Akad. Wetensch. Proc. Ser. A 67 = Indag. Math. 26 (1964), 280–289. MR 0167537
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 423-439
- MSC: Primary 51A10; Secondary 17C40, 17C50
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617543-0
- MathSciNet review: 617543