Integral geometric properties of capacities
HTML articles powered by AMS MathViewer
- by Pertti Mattila
- Trans. Amer. Math. Soc. 266 (1981), 539-554
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617550-8
- PDF | Request permission
Abstract:
Let $m$ and $n$ be positive integers, $0 < m < n$, and ${C_K}$ and ${C_H}$ the usual potential-theoretic capacities on ${R^n}$ corresponding to lower semicontinuous kernels $K$ and $H$ on ${R^n} \times {R^n}$ with $H(x,y) = K(x,y){\left | {x - y} \right |^{n - m}} \geqslant 1$ for $\left | {x - y} \right | \leqslant 1$. We consider relations between the capacities ${C_K}(E)$ and ${C_H}(E \cap A)$ when $E \subset {R^n}$ and $A$ varies over the $m$-dimensional affine subspaces of ${R^n}$. For example, we prove that if $E$ is compact, ${C_K}(E) \leqslant c\smallint {C_H}(E \cap A)d{\lambda _{n,m}}A$ where ${\lambda _{n,m}}$ is a rigidly invariant measure and $c$ is a positive constant depending only on $n$ and $m$.References
- F. J. Almgren Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199. MR 420406, DOI 10.1090/memo/0165
- Claude Dellacherie, Ensembles analytiques, capacités, mesures de Hausdorff, Lecture Notes in Mathematics, Vol. 295, Springer-Verlag, Berlin-New York, 1972 (French). MR 0492152, DOI 10.1007/BFb0060706
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Bent Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139–215. MR 117453, DOI 10.1007/BF02546356
- Robert Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153–155. MR 248779, DOI 10.1112/S0025579300002503
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257–302. MR 63439, DOI 10.1112/plms/s3-4.1.257
- Pertti Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227–244. MR 0409774, DOI 10.5186/aasfm.1975.0110
- Makoto Ohtsuka, Capacité des ensembles produits, Nagoya Math. J. 12 (1957), 95–130 (French). MR 105570, DOI 10.1017/S0027763000021966
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 539-554
- MSC: Primary 31B15; Secondary 28A75, 31C15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617550-8
- MathSciNet review: 617550