Global Warfield groups
HTML articles powered by AMS MathViewer
- by Roger Hunter and Fred Richman
- Trans. Amer. Math. Soc. 266 (1981), 555-572
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617551-X
- PDF | Request permission
Abstract:
A global Warfield group is a summand of a simply presented abelian group. The theory of global Warfield groups encompasses both the theory of totally projective $p$-groups, which includes the classical Ulm-Zippin theory of countable $p$-groups, and the theory of completely decomposable torsion-free groups. This paper develops the central results of the theory including existence and uniqueness theorems. In addition it is shown that every decomposition basis of a global Warfield group has a nice subordinate with simply presented torsion cokernel, and that every global Warfield group is a direct sum of a group of countable torsion-free rank and a simply presented group.References
- D. Arnold, R. Hunter, and F. Richman, Global Azumaya theorems in additive categories, J. Pure Appl. Algebra 16 (1980), no. 3, 223–242. MR 558485, DOI 10.1016/0022-4049(80)90026-2
- David Arnold, Roger Hunter, and Elbert Walker, Direct sums of cyclic valuated groups, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977) Academic Press, London-New York, 1979, pp. 77–84. MR 565600
- Peter Crawley and Alfred W. Hales, The structure of torsion abelian groups given by presentations, Bull. Amer. Math. Soc. 74 (1968), 954–956. MR 232840, DOI 10.1090/S0002-9904-1968-12102-0
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Roger H. Hunter, Balanced subgroups of abelian groups, Trans. Amer. Math. Soc. 215 (1976), 81–98. MR 507068, DOI 10.1090/S0002-9947-1976-0507068-3
- Roger Hunter, Fred Richman, and Elbert Walker, Simply presented valuated abelian $p$-groups, J. Algebra 49 (1977), no. 1, 125–133. MR 507069, DOI 10.1016/0021-8693(77)90272-1
- Roger Hunter, Fred Richman, and Elbert Walker, Existence theorems for Warfield groups, Trans. Amer. Math. Soc. 235 (1978), 345–362. MR 473044, DOI 10.1090/S0002-9947-1978-0473044-4
- Roger Hunter, Fred Richman, and Elbert Walker, Warfield modules, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 87–123. MR 0506216
- Irving Kaplansky and George W. Mackey, A generalization of Ulm’s theorem, Summa Brasil. Math. 2 (1951), 195–202. MR 49165
- Charles K. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math. 11 (1967), 134–144. MR 202832
- Charles Megibben, Modules over an incomplete discrete valuation ring, Proc. Amer. Math. Soc. 19 (1968), 450–452. MR 222071, DOI 10.1090/S0002-9939-1968-0222071-X F. Richman, The constructive theory of $KT$-modules, Pacific J. Math. 61 (1975), 621-637.
- Fred Richman and Elbert A. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167. MR 527162, DOI 10.1016/0021-8693(79)90330-2
- Joseph Rotman, Mixed modules over valuations rings, Pacific J. Math. 10 (1960), 607–623. MR 114814
- Joseph Rotman, Torsion-free and mixed abelian groups, Illinois J. Math. 5 (1961), 131–143. MR 130908
- Joseph Rotman and Ti Yen, Modules over a complete discrete valuation ring, Trans. Amer. Math. Soc. 98 (1961), 242–254. MR 122895, DOI 10.1090/S0002-9947-1961-0122895-1
- R. O. Stanton, An invariant for modules over a discrete valuation ring, Proc. Amer. Math. Soc. 49 (1975), 51–54. MR 360572, DOI 10.1090/S0002-9939-1975-0360572-8 —, Relative $S$-invariants, preprint.
- Robert O. Stanton, Decompostion bases and Ulm’s theorem, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 39–56. MR 0498902
- Robert O. Stanton, Infinite decomposition bases, Pacific J. Math. 70 (1977), no. 2, 549–566. MR 507066 —, Decomposition of modules over a discrete valuation ring, J. Austrialian Math. Soc. (to appear).
- Robert O. Stanton, Almost-affable abelian groups, J. Pure Appl. Algebra 15 (1979), no. 1, 41–52. MR 532962, DOI 10.1016/0022-4049(79)90039-2 —, $S$-groups, preprint. —, Warfield groups and $S$-groups, preprint.
- Elbert A. Walker, Ulm’s theorem for totally projective groups, Proc. Amer. Math. Soc. 37 (1973), 387–392. MR 311805, DOI 10.1090/S0002-9939-1973-0311805-3
- Kyle D. Wallace, On mixed groups of torsion-free rank one with totally projective primary components, J. Algebra 17 (1971), 482–488. MR 272891, DOI 10.1016/0021-8693(71)90005-6 R. B. Warfield, Jr., Invariants and a classification theorem for modules over a discrete valuation ring, Univ. of Washington notes, 1971.
- R. B. Warfield Jr., Classification theorems for $p$-groups and modules over a discrete valuation ring, Bull. Amer. Math. Soc. 78 (1972), 88–92. MR 291284, DOI 10.1090/S0002-9904-1972-12870-2 —, Simply presented groups, Proc. Sem. Abelian Group Theory, Univ. of Arizona lecture notes, 1972. —, Simply presented groups, Univ. of Washington notes, January 1974.
- R. B. Warfield Jr., A classification theorem for abelian $p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149–168. MR 372071, DOI 10.1090/S0002-9947-1975-0372071-2
- R. B. Warfield Jr., Classification theory of abelian groups. I. Balanced projectives, Trans. Amer. Math. Soc. 222 (1976), 33–63. MR 422455, DOI 10.1090/S0002-9947-1976-0422455-X —, Classification theory of abelian groups. II. Local theory, preprint.
- Robert B. Warfield Jr., The structure of mixed abelian groups, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 1–38. MR 0507073
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 555-572
- MSC: Primary 20K21
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617551-X
- MathSciNet review: 617551