On asymptotically almost periodic solutions of a convolution equation
HTML articles powered by AMS MathViewer
- by Olof J. Staffans
- Trans. Amer. Math. Soc. 266 (1981), 603-616
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617554-5
- PDF | Request permission
Abstract:
We study questions related to asymptotic almost periodicity of solutions of the linear convolution equation $( \ast )\mu \ast x = f$. Here $\mu$ is a complex measure, and $x$ and $f$ are bounded functions. Basically we are interested in conditions which imply that bounded solutions of $( \ast )$ are asymptotically almost periodic. In particular, we show that a certain necessary condition on $f$ for this to happen is also sufficient, thereby strengthening earlier results. We also include a result on existence of bounded solutions, and indicate a generalization to a distribution equation.References
- Raouf Doss, On the almost periodic solutions of a class of integrodifferential-difference equations, Ann. of Math. (2) 81 (1965), 117–123. MR 170169, DOI 10.2307/1970387
- A. M. Fink, Almost periodic differential equations, Lecture Notes in Mathematics, Vol. 377, Springer-Verlag, Berlin-New York, 1974. MR 0460799
- A. M. Fink and W. R. Madych, On certain bounded solutions of $g\ast \mu =f$, Proc. Amer. Math. Soc. 75 (1979), no. 2, 235–242. MR 532143, DOI 10.1090/S0002-9939-1979-0532143-5
- G. S. Jordan, W. R. Madych, and R. L. Wheeler, Linear convolution integral equations with asymptotically almost periodic solutions, Proc. Amer. Math. Soc. 78 (1980), no. 3, 337–341. MR 553371, DOI 10.1090/S0002-9939-1980-0553371-7
- G. S. Jordan and Robert L. Wheeler, Linear integral equations with asymptotically almost periodic solutions, J. Math. Anal. Appl. 52 (1975), no. 3, 454–464. MR 410311, DOI 10.1016/0022-247X(75)90072-4
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- J. J. Levin and D. F. Shea, On the asymptotic behavior of the bounded solutions of some integral equations. I, II, III, J. Math. Anal. Appl. 37 (1972). MR 306849, DOI 10.1016/0022-247X(72)90258-2
- L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. of Math. (2) 72 (1960), 362–368. MR 120502, DOI 10.2307/1970139
- Harry Pollard, The harmonic analysis of bounded functions, Duke Math. J. 20 (1953), 499–512. MR 57363
- Walter Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. MR 0365062
- Laurent Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Université de Strasbourg, IX-X, Hermann, Paris, 1966 (French). Nouvelle édition, entiérement corrigée, refondue et augmentée. MR 0209834
- Daniel F. Shea and Stephen Wainger, Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975), 312–343. MR 372521, DOI 10.2307/2373715
- Olof J. Staffans, Tauberian theorems for a positive definite form, with applications to a Volterra equation, Trans. Amer. Math. Soc. 218 (1976), 239–259. MR 422936, DOI 10.1090/S0002-9947-1976-0422936-9
- Olof J. Staffans, On the asymptotic spectra of the bounded solutions of a nonlinear Volterra equation, J. Differential Equations 24 (1977), no. 3, 365–382. MR 463855, DOI 10.1016/0022-0396(77)90006-7
- Olof J. Staffans, An asymptotic problem for a positive definite operator-valued Volterra kernel, SIAM J. Math. Anal. 9 (1978), no. 5, 855–866. MR 506767, DOI 10.1137/0509068
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 266 (1981), 603-616
- MSC: Primary 46F10; Secondary 42A75, 45A05
- DOI: https://doi.org/10.1090/S0002-9947-1981-0617554-5
- MathSciNet review: 617554