Obstructions to deforming a space curve
HTML articles powered by AMS MathViewer
- by Daniel J. Curtin
- Trans. Amer. Math. Soc. 267 (1981), 83-94
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621974-2
- PDF | Request permission
Abstract:
Mumford described a curve, $\gamma$, in ${{\mathbf {P}}^3}$ that has obstructed infinitesimal deformations (in fact the Hilbert scheme of the curve is generically nonreduced). This paper studies $\gamma ’{\text {s}}$ Hilbert scheme by studying deformations of $\gamma$ in ${{\mathbf {P}}^3}$ over parameter spaces of the form $\operatorname {Spec} (k[t]/({t^n})), n = 2, 3, \ldots$. Given a deformation of $\gamma$ over $\operatorname {Spec} (k[t]/({t^n}))$ one attempts to extend it to a deformation of $\gamma$ over $\operatorname {Spec} (k[t]/({t^{n + 1}}))$. If it will not extend, this deformation is said to be obstructed at the nth order. I show that on a generic version of Mumford’s curve, an infinitesimal deformation (i.e., a deformation over $\operatorname {Spec} (k[t]/({t^2}))$) is either obstructed at the second order, or at no order, in which case we say it is unobstructed.References
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 0463157
- David Mumford, Further pathologies in algebraic geometry, Amer. J. Math. 84 (1962), 642–648. MR 148670, DOI 10.2307/2372870
- Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 217093, DOI 10.1090/S0002-9947-1968-0217093-3
- Michael Schlessinger, On rigid singularities, Rice Univ. Stud. 59 (1973), no. 1, 147–162. MR 344519
- Jean-Pierre Serre, Faisceaux algébriques cohérents, Ann. of Math. (2) 61 (1955), 197–278 (French). MR 68874, DOI 10.2307/1969915
- Jonathan M. Wahl, Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529–577. MR 387287, DOI 10.2307/2373706
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 267 (1981), 83-94
- MSC: Primary 14D15
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621974-2
- MathSciNet review: 621974