Essential spectra of elementary operators
HTML articles powered by AMS MathViewer
- by L. A. Fialkow
- Trans. Amer. Math. Soc. 267 (1981), 157-174
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621980-8
- PDF | Request permission
Abstract:
This paper describes the essential spectrum and index function of the operator $X \to AXB$, where $A$, $B$, and $X$ are Hilbert space operators. Analogous results are given for the restriction of this operator to a norm ideal and partial analogues are given for sums of such operators and for the case when the operators act on a Banach space.References
- Joel Anderson, John W. Bunce, James A. Deddens, and J. P. Williams, $C^{\ast }$-algebras and derivation ranges, Acta Sci. Math. (Szeged) 40 (1978), no.Β 3-4, 211β227. MR 515202
- Constantin Apostol, Inner derivations with closed range, Rev. Roumaine Math. Pures Appl. 21 (1976), no.Β 3, 249β265. MR 410459 C. Apostol, C. FoiaΕ and D. Voiculescu, Some results on nonquasitriangular operators. IV, Rev. Roumaine Math. Pures Appl. 18 (1973), 487-514.
- Arlen Brown and Carl Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162β166. MR 188786, DOI 10.1090/S0002-9939-1966-0188786-5
- Arlen Brown and Carl Pearcy, Compact restrictions of operators, Acta Sci. Math. (Szeged) 32 (1971), 271β282. MR 305119
- J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839β873. MR 5790, DOI 10.2307/1968771
- Chandler Davis and Peter Rosenthal, Solving linear operator equations, Canadian J. Math. 26 (1974), 1384β1389. MR 355649, DOI 10.4153/CJM-1974-132-6
- R. G. Douglas, On the operator equation $S^{\ast } XT=X$ and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19β32. MR 250106
- M. R. Embry and M. Rosenblum, Spectra, tensor products, and linear operator equations, Pacific J. Math. 53 (1974), 95β107. MR 353023
- L. Fialkow, A note on the operator $X\rightarrow AX-XB$, Trans. Amer. Math. Soc. 243 (1978), 147β168. MR 502900, DOI 10.1090/S0002-9947-1978-0502900-3
- Lawrence A. Fialkow, A note on norm ideals and the operator $X\longrightarrow AX-XB$, Israel J. Math. 32 (1979), no.Β 4, 331β348. MR 571087, DOI 10.1007/BF02760462
- Lawrence A. Fialkow, A note on the range of the operator $X\rightarrow AX-XB$, Illinois J. Math. 25 (1981), no.Β 1, 112β124. MR 602902
- L. A. Fialkow, Elements of spectral theory for generalized derivations, J. Operator Theory 3 (1980), no.Β 1, 89β113. MR 565753
- Lawrence A. Fialkow, Elements of spectral theory for generalized derivations. II. The semi-Fredholm domain, Canadian J. Math. 33 (1981), no.Β 5, 1205β1231. MR 638376, DOI 10.4153/CJM-1981-091-4 β, Spectral theory of elementary multiplications (preprint).
- I. C. Gohberg and M. G. KreΔn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. Translated from the Russian by A. Feinstein. MR 0246142
- Donald W. Hadwin, An asymptotic double commutant theorem for $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 244 (1978), 273β297. MR 506620, DOI 10.1090/S0002-9947-1978-0506620-0
- P. R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283β293. MR 234310
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Gunter Lumer and Marvin Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32β41. MR 104167, DOI 10.1090/S0002-9939-1959-0104167-0
- Richard S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. MR 0198494
- Carl M. Pearcy, Some recent developments in operator theory, Regional Conference Series in Mathematics, No. 36, American Mathematical Society, Providence, R.I., 1978. MR 0487495
- Marvin Rosenblum, On the operator equation $BX-XA=Q$, Duke Math. J. 23 (1956), 263β269. MR 79235
- Dan Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl. 21 (1976), no.Β 1, 97β113. MR 415338
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 267 (1981), 157-174
- MSC: Primary 47A10; Secondary 47A53, 47B99
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621980-8
- MathSciNet review: 621980