Markov processes with Lipschitz semigroups
HTML articles powered by AMS MathViewer
- by Richard Bass
- Trans. Amer. Math. Soc. 267 (1981), 307-320
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621990-0
- PDF | Request permission
Abstract:
For $f$ a function on a metric space, let \[ \operatorname {Lip} f = \sup \limits _{x \ne y} |f(x) - f(y)|/d(x, y),\] and say that a semigroup ${P_t}$ is Lipschitz if $\operatorname {Lip} ({P_t}f) \leqslant {e^{Kt}}\operatorname {Lip} f$ for all $f$, $t$, where $K$ is a constant. If one has two Lipschitz semigroups, then, with some additional assumptions, the sum of their infinitesimal generators will also generate a Lipschitz semigroup. Furthermore a sequence of uniformly Lipschitz semigroups has a subsequence which converges in the strong operator topology. Examples of Markov processes with Lipschitz semigroups include all diffusions on the real line which are on natural scale whose speed measures satisfy mild conditions, as well as some jump processes. One thus gets Markov processes whose generators are certain integro-differential operators. One can also interpret the results as giving some smoothness conditions for the solutions of certain parabolic partial differential equations.References
- Ludwig Arnold, Stochastic differential equations: theory and applications, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Translated from the German. MR 0443083
- Richard F. Bass, Adding and subtracting jumps from Markov processes, Trans. Amer. Math. Soc. 255 (1979), 363–376. MR 542886, DOI 10.1090/S0002-9947-1979-0542886-X
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- H. Brezis, W. Rosenkrantz, and B. Singer, On a degenerate elliptic-parabolic equation occurring in the theory of probability, Comm. Pure Appl. Math. 24 (1971), 395–416. MR 284717, DOI 10.1002/cpa.3160240305
- Paul R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis 2 (1968), 238–242. MR 0231238, DOI 10.1016/0022-1236(68)90020-7
- Gaetano Fichera, Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 5 (1956), 1–30 (Italian). MR 89348
- M. I. Freĭdlin, A priori bounds for solutions of degenerate elliptic equations, Dokl. Akad. Nauk SSSR 158 (1964), 281–283 (Russian). MR 0173075
- Kiyoshi Itô and Henry P. McKean Jr., Diffusion processes and their sample paths, Die Grundlehren der mathematischen Wissenschaften, Band 125, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-New York, 1965. MR 0199891
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 234118, DOI 10.1002/cpa.3160200410
- Takashi Komatsu, Markov processes associated with certain integro-differential operators, Osaka Math. J. 10 (1973), 271–303. MR 359017 V. A. Kostin, Smoothness of solutions of certain parabolic equations. I, II, III, Differential Equations 12 (1976), 1054-1063; ibid. 12 (1976), 1139-1143; ibid. 12 (1976), 1470-1473.
- J.-P. Lepeltier and B. Marchal, Problème des martingales et équations différentielles stochastiques associées à un opérateur intégro-différentiel, Ann. Inst. H. Poincaré Sect. B (N.S.) 12 (1976), no. 1, 43–103 (French). MR 0413288
- O. A. Oleĭnik, On the smoothness of solutions of degenerating elliptic and parabolic equations, Dokl. Akad. Nauk SSSR 163 (1965), 577–580 (Russian). MR 0200595
- A. V. Skorohod, Issledovaniya po teorii sluchaĭ nykh protsessov (Stokhasticheskie differentsial′nye uravneniya i predel′nye teoremy dlya protsessov Markova), Izdat. Kiev. Univ., Kiev, 1961 (Russian). MR 0185619
- Daniel W. Stroock, Diffusion processes associated with Lévy generators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 3, 209–244. MR 433614, DOI 10.1007/BF00532614
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 267 (1981), 307-320
- MSC: Primary 60J35; Secondary 47D07, 60H20, 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1981-0621990-0
- MathSciNet review: 621990