Counting divisors with prescribed singularities
HTML articles powered by AMS MathViewer
- by Israel Vainsencher
- Trans. Amer. Math. Soc. 267 (1981), 399-422
- DOI: https://doi.org/10.1090/S0002-9947-1981-0626480-7
- PDF | Request permission
Abstract:
Given a family of divisors $\{ {D_s}\}$ in a family of smooth varieties $\{ {Y_s}\}$ and a sequence of integers ${m_1}, \ldots ,{m_t}$, we study the scheme parametrizing the points $(s,{y_1}, \ldots ,{y_t})$ such that ${y_i}$ is a (possibly infinitely near) ${m_i}$-fold point of ${D_s}$. We obtain a general formula which yields, as special cases, the formula of de Jonquières and other classical results of Enumerative Geometry. We also study the questions of finiteness and the multiplicities of the solutions.References
- Allen B. Altman and Steven L. Kleiman, Foundations of the theory of Fano schemes, Compositio Math. 34 (1977), no. 1, 3–47. MR 569043 H. F. Baker, Principles of geometry. Vol. VI, Cambridge Univ. Press, Cambridge, 1933. F. Enriques and O. Chisini, Teoria geometrica delle equazioni e delle funzioni algebriche. Vol. II, Nicola Zanichelli Editore, Bologna, 1918.
- Federigo Enriques, Le Superficie Algebriche, Nicola Zanichelli, Bologna, 1949 (Italian). MR 0031770
- William Fulton, Rational equivalence on singular varieties, Inst. Hautes Études Sci. Publ. Math. 45 (1975), 147–167. MR 404257
- Alexander Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France 86 (1958), 137–154 (French). MR 116023 A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique (cited [EGA ${\text {I}}{{\text {V}}_4}$]), Inst. Hautes Etudes Sci. Publ. Math. No. 32, 1967. D. Hilbert, Mathematical problems, translated by M. W. Newson, Bull. Amer. Math. Soc. 8 (1901-02), 437-479.
- Birger Iversen, Numerical invariants and multiple planes, Amer. J. Math. 92 (1970), 968–996. MR 296074, DOI 10.2307/2373405 J. P. E. F. de Jonquières, Mémoire sur les contacts multiples . . . , Crelle J. 66 (1866), 289-321. N. Katz, Étude cohomologique des pinceaux de Lefschetz, Groupes de Monodromie en Géométrie Algébrique (SGA VII), Lecture Notes in Math, vol. 340, Springer-Verlag, Berlin and New York, 1970. S. L. Kleiman, Problem 15. Rigorous foundation of Schubert’s enumerative calculus, Proc. Sympos. Pure Math., vol. 28, Amer. Math. Soc., Providence, R. I., 1974.
- Real and complex singularities, Oslo 1976, Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1977. MR 0457430
- Steven L. Kleiman, The transversality of a general translate, Compositio Math. 28 (1974), 287–297. MR 360616
- Alain Lascoux, Sistemi lineari di divisori sulle curve e sulle superficie, Ann. Mat. Pura Appl. (4) 114 (1977), 141–153 (Italian, with French summary). MR 466160, DOI 10.1007/BF02413783
- I. G. Macdonald, Some enumerative formulae for algebraic curves, Proc. Cambridge Philos. Soc. 54 (1958), 399–416. MR 95171
- I. G. Macdonald, Symmetric products of an algebraic curve, Topology 1 (1962), 319–343. MR 151460, DOI 10.1016/0040-9383(62)90019-8 Y. I. Manin, Lectures on the $K$-functor in algebraic geometry, Russian Math. Surveys 24 (1969), 1-89.
- Arthur Mattuck, Secant bundles on symmetric products, Amer. J. Math. 87 (1965), 779–797. MR 199196, DOI 10.2307/2373245 S. Roberts, Sur l’ordre des conditions . . . , Crelle J. 67 (1867), 266-278.
- George Salmon, A treatise on the analytic geometry of three dimensions, Chelsea Publishing Co., New York, 1958. Revised by R. A. P. Rogers; 7th ed. Vol. 1; Edited by C. H. Rowe. MR 0094753
- Hermann Schubert, Kalkül der abzählenden Geometrie, Springer-Verlag, Berlin-New York, 1979 (German). Reprint of the 1879 original; With an introduction by Steven L. Kleiman. MR 555576
- R. L. E. Schwarzenberger, The secant bundle of a projective variety, Proc. London Math. Soc. (3) 14 (1964), 369–384. MR 0159826, DOI 10.1112/plms/s3-14.2.369 C. Segre, Introduzione alla geometria sopra un ente algebrico semplicemente infinito, Ann. Mat. 22 (1894), 41-142.
- Israel Vainsencher, Conics in characteristic $2$, Compositio Math. 36 (1978), no. 1, 101–112. MR 515040
- Jean-Louis Verdier, Le théorème de Riemann-Roch pour les variétés algébriques éventuellement singulières (d’après P. Baum, W. Fulton et R. MacPherson), Séminaire Bourbaki (1974/1975: Exposés Nos. 453–470), Lecture Notes in Math., Vol. 514, Springer, Berlin, 1976, pp. Exp. No. 464, pp. 159–175. MR 0444656 H. G. Zeuthen and M. Pieri, Géométrie énumérative, Encyclopédie des Sciences Mathématiques, Vol. III, 2, Teubner, Leipzig, 1915, pp. 260-331.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 267 (1981), 399-422
- MSC: Primary 14N10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0626480-7
- MathSciNet review: 626480