Morse theory by perturbation methods with applications to harmonic maps
HTML articles powered by AMS MathViewer
- by K. Uhlenbeck
- Trans. Amer. Math. Soc. 267 (1981), 569-583
- DOI: https://doi.org/10.1090/S0002-9947-1981-0626490-X
- PDF | Request permission
Abstract:
There are many interesting variational problems for which the Palais-Smale condition cannot be verified. In cases where the Palais-Smale condition can be verified for an approximating integral, and the critical points converge, a Morse theory is valid. This theory applies to a class of variational problems consisting of the energy integral for harmonic maps with a lower order potential.References
- Shmuel Agmon, The $L_{p}$ approach to the Dirichlet problem. I. Regularity theorems, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 405–448. MR 125306
- James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160. MR 164306, DOI 10.2307/2373037
- Richard S. Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Mathematics, Vol. 471, Springer-Verlag, Berlin-New York, 1975. MR 0482822
- Philip Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687. MR 214004, DOI 10.4153/CJM-1967-062-6
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- Jürgen Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457–468. MR 170091, DOI 10.1002/cpa.3160130308
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Richard S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299–340. MR 158410, DOI 10.1016/0040-9383(63)90013-2
- R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165–172. MR 158411, DOI 10.1090/S0002-9904-1964-11062-4
- Richard S. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology 5 (1966), 115–132. MR 259955, DOI 10.1016/0040-9383(66)90013-9
- Richard S. Palais, Foundations of global non-linear analysis, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0248880
- Jacob T. Schwartz, Generalizing the Lusternik-Schnirelman theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307–315. MR 166796, DOI 10.1002/cpa.3160170304
- S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math. (2) 80 (1964), 382–396. MR 165539, DOI 10.2307/1970398
- A. J. Tromba, A general approach to Morse theory, J. Differential Geometry 12 (1977), no. 1, 47–85. MR 464304
- K. Uhlenbeck, Morse theory on Banach manifolds, J. Functional Analysis 10 (1972), 430–445. MR 0377979, DOI 10.1016/0022-1236(72)90039-0
- K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), no. 3-4, 219–240. MR 474389, DOI 10.1007/BF02392316
- K. Uhlenbeck, Harmonic maps; a direct method in the calculus of variations, Bull. Amer. Math. Soc. 76 (1970), 1082–1087. MR 264714, DOI 10.1090/S0002-9904-1970-12570-8
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 267 (1981), 569-583
- MSC: Primary 58E05; Secondary 49F15, 58E20
- DOI: https://doi.org/10.1090/S0002-9947-1981-0626490-X
- MathSciNet review: 626490