The stable geometric dimension of vector bundles over real projective spaces
HTML articles powered by AMS MathViewer
- by Donald M. Davis, Sam Gitler and Mark Mahowald
- Trans. Amer. Math. Soc. 268 (1981), 39-61
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628445-8
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 280 (1983), 841-843.
Abstract:
An elementary argument shows that the geometric dimension of any vector bundle of order ${2^e}$ over $R{P^n}$ depends only on $e$ and the residue of $n \bmod 8$ for $n$ sufficiently large. In this paper we calculate this geometric dimension, which is approximately $2e$. The nonlifting results are easily obtained using the spectrum $bJ$. The lifting results require $bo$-resolutions. Half of the paper is devoted to proving Mahowald’s theorem that beginning with the second stage $bo$-resolutions act almost like $K({Z_2})$-resolutions.References
- J. F. Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365–377. MR 194486, DOI 10.1017/s0305004100039955
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, The structure of the Spin cobordism ring, Ann. of Math. (2) 86 (1967), 271–298. MR 219077, DOI 10.2307/1970690
- Edward B. Curtis, Some nonzero homotopy groups of spheres, Bull. Amer. Math. Soc. 75 (1969), 541–544. MR 245007, DOI 10.1090/S0002-9904-1969-12236-6
- Donald Davis, Generalized homology and the generalized vector field problem, Quart. J. Math. Oxford Ser. (2) 25 (1974), 169–193. MR 356053, DOI 10.1093/qmath/25.1.169
- Donald M. Davis, The cohomology of the spectrum $bJ$, Bol. Soc. Mat. Mexicana (2) 20 (1975), no. 1, 6–11. MR 467749
- Donald M. Davis and Mark Mahowald, Obstruction theory and $K$-theory, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp. 134–164. MR 513571
- Donald M. Davis and Mark Mahowald, A nondesuspension theorem for stunted real projective spaces, Proc. Amer. Math. Soc. 71 (1978), no. 1, 143–146. MR 474300, DOI 10.1090/S0002-9939-1978-0474300-1
- S. Feder, S. Gitler, and K. Y. Lam, Composition properties of projective homotopy classes, Pacific J. Math. 68 (1977), no. 1, 47–61. MR 515518
- S. Feder and W. Iberkleid, Secondary operations in $K$-theory and the generalized vector field problem, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976) Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977, pp. 161–175. MR 0451244
- Kee Yuen Lam, $K\textrm {O}$-equivalences and existence of nonsingular bilinear maps, Pacific J. Math. 82 (1979), no. 1, 145–154. MR 549839 J. M. Long, Two contributions to the homotopy theory of $H$-spaces, Thesis, Princeton University, 1979.
- Mark Mahowald, A new infinite family in ${}_{2}\pi _{*}{}^s$, Topology 16 (1977), no. 3, 249–256. MR 445498, DOI 10.1016/0040-9383(77)90005-2 —, The metastable homotopy of ${S^n}$, Mem. Amer. Math. Soc., no. 72, Amer. Math. Soc., Providence, R. I., 1967. —, $bo$-resolutions, Pacific J. Math, (to appear).
- Mark Mahowald, Ring spectra which are Thom complexes, Duke Math. J. 46 (1979), no. 3, 549–559. MR 544245
- M. Mahowald and R. James Milgram, Operations which detect Sq4 in connective $K$-theory and their applications, Quart. J. Math. Oxford Ser. (2) 27 (1976), no. 108, 415–432. MR 433453, DOI 10.1093/qmath/27.4.415
- Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Band 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
- R. James Milgram, The Steenrod algebra and its dual for connective $K$-theory, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, México, 1975, pp. 127–158. MR 761725 A. Unell, A nonembedding result for an infinite family of homotopy spheres, Thesis, Northwestern University, 1979.
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 39-61
- MSC: Primary 55N15; Secondary 55R25
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628445-8
- MathSciNet review: 628445