An effective version of Dilworth’s theorem
HTML articles powered by AMS MathViewer
- by Henry A. Kierstead
- Trans. Amer. Math. Soc. 268 (1981), 63-77
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628446-X
- PDF | Request permission
Abstract:
We prove that if $(P, { < ^P})$ is a recursive partial order with finite width $w$, then $P$ can be covered by $({5^w} - 1)/4$ recursive chains. For each $w$ we show that there is a recursive partial ordering of width $w$ that cannot be covered by $4(w - 1)$ recursive chains.References
- Dwight R. Bean, Effective coloration, J. Symbolic Logic 41 (1976), no. 2, 469–480. MR 416889, DOI 10.2307/2272247
- Dwight R. Bean, Recursive Euler and Hamilton paths, Proc. Amer. Math. Soc. 55 (1976), no. 2, 385–394. MR 416888, DOI 10.1090/S0002-9939-1976-0416888-0
- R. P. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. (2) 51 (1950), 161–166. MR 32578, DOI 10.2307/1969503 C. Jockush, Ramsey’s theorem and recursion theory, J. Symbolic Logic 37 (1972), 268-279. H. Kierstead, Recursive colorings of highly recursive graphs (in preparation).
- G. Metakides and A. Nerode, Recursion theory and algebra, Algebra and logic (Fourteenth Summer Res. Inst., Austral. Math. Soc., Monash Univ., Clayton, 1974) Lecture Notes in Math., Vol. 450, Springer, Berlin, 1975, pp. 209–219. MR 0371580
- Micha A. Perles, A proof of Dilworth’s decomposition theorem for partially ordered sets, Israel J. Math. 1 (1963), 105–107. MR 168496, DOI 10.1007/BF02759805
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
- James H. Schmerl, Recursive colorings of graphs, Canadian J. Math. 32 (1980), no. 4, 821–830. MR 590647, DOI 10.4153/CJM-1980-062-7 —, The effective version of Brook’s theorem (in preparation).
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 63-77
- MSC: Primary 03D45; Secondary 05A05, 06A10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628446-X
- MathSciNet review: 628446