Brouwerian semilattices
HTML articles powered by AMS MathViewer
- by Peter Köhler
- Trans. Amer. Math. Soc. 268 (1981), 103-126
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628448-3
- PDF | Request permission
Abstract:
Let ${\mathbf {P}}$ be the category whose objects are posets and whose morphisms are partial mappings $\alpha :P \to Q$ satisfying (i) $\forall p, q \in \operatorname {dom} \alpha [p < q \Rightarrow \alpha (p) < \alpha (q)]$ and (ii) $\forall p \in \operatorname {dom} \alpha \forall q \in Q[q < \alpha (p) \Rightarrow \exists r \in \operatorname {dom} \alpha [r < p\& \alpha (r) = q]]$. The full subcategory ${{\mathbf {P}}_f}$ of ${\mathbf {P}}$ consisting of all finite posets is shown to be dually equivalent to the category of finite Brouwerian semilattices and homomorphisms. Under this duality a finite Brouwerian semilattice $\underline A$ corresponds with $M(\underline A )$, the poset of all meet-irreducible elements of $\underline A$. The product (in ${{\mathbf {P}}_f}$) of $n$ copies $(n \in \mathbb {N})$ of a one-element poset is constructed; in view of the duality this product is isomorphic to the poset of meet-irreducible elements of the free Brouwerian semilattice on $n$ generators. If ${\mathbf {V}}$ is a variety of Brouwerian semilattices and if $\underline A$ is a Brouwerian semilattice, then $\underline A$ is ${\mathbf {V}}$-critical if all proper subalgebras of $\underline A$ belong to ${\mathbf {V}}$ but not $\underline A$. It is shown that a variety ${\mathbf {V}}$ of Brouwerian semilattices has a finite equational base if and only if there are up to isomorphism only finitely many ${\mathbf {V}}$-critical Brouwerian semilattices. This is used to show that a variety generated by a finite Brouwerian semilattice as well as the join of two finitely based varieties is finitely based. A new example of a variety without a finite equational base is exhibited.References
- Kirby A. Baker, Finite equational bases for finite algebras in a congruence-distributive equational class, Advances in Math. 24 (1977), no. 3, 207–243. MR 447074, DOI 10.1016/0001-8708(77)90056-1
- Raymond Balbes, A representation theory for prime and implicative semilattices, Trans. Amer. Math. Soc. 136 (1969), 261–267. MR 233741, DOI 10.1090/S0002-9947-1969-0233741-7
- Raymond Balbes, On free pseudo-complemented and relatively pseudo-complemented semi-lattices, Fund. Math. 78 (1973), no. 2, 119–131. MR 319832, DOI 10.4064/fm-78-2-119-131
- Raymond Balbes and Philip Dwinger, Distributive lattices, University of Missouri Press, Columbia, Mo., 1974. MR 0373985
- W. J. Blok, Finitely generated free interior algebras, Proceedings of the Lattice Theory Conference (Ulm, 1975) Univ. Ulm, Ulm, 1975, pp. 5–9. MR 0434913
- W. J. Blok, The lattice of modal logics: an algebraic investigation, J. Symbolic Logic 45 (1980), no. 2, 221–236. MR 569394, DOI 10.2307/2273184 W. J. Blok and D. Pigozzi, The deduction theorem in algebraic logic (manuscript). N. G. de Bruijn, Exact finite models for minimal propositional calculus over a finite alphabeth, T.H.-Report 75-WSK-02, Dept. of Math., Eindhoven Technological University, 1975. —, An ALGOL-program for deciding derivability in minimal propositional calculus with implication and conjunction over a three letter alphabeth, Memorandum 1975-06, Dept. of Math., Eindhoven Technological University, 1975. —, The use of partially ordered sets for the study of non-classical propositional logics, Problèmes Combinatoires et Théorie des Graphes, Colloques Internat. C.N.R.S., No. 260, 1978, pp. 67-70.
- Brian A. Davey, On the lattice of subvarieties, Houston J. Math. 5 (1979), no. 2, 183–192. MR 546753 A. Day, Varieties of Heyting algebras (unpublished manuscript).
- Antonio Diego, Sur les algèbres de Hilbert, Collection de Logique Mathématique, Sér. A, Fasc. XXI, Gauthier-Villars, Paris; E. Nauwelaerts, Louvain, 1966 (French). Translated from the Spanish by Luisa Iturrioz. MR 0199086
- J. Eastham and W. Nemitz, Density and closure in implicative semi-lattices, Algebra Universalis 5 (1975), 1–7. MR 392712, DOI 10.1007/BF02485225
- Orrin Frink, Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505–514. MR 140449
- George Grätzer, Universal algebra, 2nd ed., Springer-Verlag, New York-Heidelberg, 1979. MR 538623 V. A. Jankov, The relationship between deducibility in the intuitionistic propositional calculus and finite implicational structures, Soviet Math. Dokl. 4 (1963), 1203-1204.
- Bjarni Jónsson, Algebras whose congruence lattices are distributive, Math. Scand. 21 (1967), 110–121 (1968). MR 237402, DOI 10.7146/math.scand.a-10850
- Tibor Katriňák, Die Kennzeichnung der distributiven pseudokomplementären Halbverbände, J. Reine Angew. Math. 241 (1970), 160–179 (German). MR 260629, DOI 10.1515/crll.1970.241.160
- Tibor Katriňák, Remarks on the W. C. Nemitz’s paper “Semi-Boolean lattices”, Notre Dame J. Formal Logic 11 (1970), 425–430. MR 290946
- Peter Köhler, The semigroup of varieties of Brouwerian semilattices, Trans. Amer. Math. Soc. 241 (1978), 331–342. MR 480230, DOI 10.1090/S0002-9947-1978-0480230-6
- Peter Köhler, Endomorphism semigroups of Brouwerian semilattices, Semigroup Forum 15 (1977/78), no. 3, 229–234. MR 466381, DOI 10.1007/BF02195755 —, Brouwerian semilattices: The lattice of total subalgebras, Algebra and Its Applications, Banach Center Publications (to appear).
- Peter Köhler and Don Pigozzi, Varieties with equationally definable principal congruences, Algebra Universalis 11 (1980), no. 2, 213–219. MR 588215, DOI 10.1007/BF02483100
- Piotr S. Krzystek, On the free relatively pseudocomplemented semilattice with three generators, Rep. Math. Logic 9 (1977), 31–38. MR 551492
- W. J. Landolt and T. P. Whaley, Relatively free implicative semi-lattices, Algebra Universalis 4 (1974), 166–184. MR 357252, DOI 10.1007/BF02485721
- W. J. Landolt and T. P. Whaley, The free implicative semi-lattice on three generators, Algebra Universalis 6 (1976), no. 1, 73–80. MR 398919, DOI 10.1007/BF02485817
- Saunders MacLane, Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York-Berlin, 1971. MR 0354798
- D. S. Macnab, Modal operators on Heyting algebras, Algebra Universalis 12 (1981), no. 1, 5–29. MR 608645, DOI 10.1007/BF02483860
- Angelo Margaris, Identities in implicative semilattices, Proc. Amer. Math. Soc. 41 (1973), 443–448. MR 337707, DOI 10.1090/S0002-9939-1973-0337707-4
- C. G. McKay, The decidability of certain intermediate propositional logics, J. Symbolic Logic 33 (1968), 258–264. MR 239946, DOI 10.2307/2269871
- Ralph McKenzie, Equational bases and nonmodular lattice varieties, Trans. Amer. Math. Soc. 174 (1972), 1–43. MR 313141, DOI 10.1090/S0002-9947-1972-0313141-1
- Antonio Monteiro, Axiomes indépendants pour les algèbres de Brouwer, Rev. Un. Mat. Argentina 17 (1955), 149–160 (1956) (French). MR 84483
- William C. Nemitz, Implicative semi-lattices, Trans. Amer. Math. Soc. 117 (1965), 128–142. MR 176944, DOI 10.1090/S0002-9947-1965-0176944-9
- William C. Nemitz, Semi-Boolean lattices, Notre Dame J. Formal Logic 10 (1969), 235–238. MR 245486 —, On the lattice of filters of an implicative semilattice, J. Math. Mech. 18 (1969), 683-688.
- William C. Nemitz, Implicative homomorphisms with finite ranges, Proc. Amer. Math. Soc. 33 (1972), 319–322. MR 307992, DOI 10.1090/S0002-9939-1972-0307992-2
- William C. Nemitz, Implicative semi-lattices and ternary algebras, Scripta Math. 29 (1973), 39–41. MR 325473
- William C. Nemitz, Irreducibility in implicative semilattices, Algebra Universalis 9 (1979), no. 2, 244–249. MR 523939, DOI 10.1007/BF02488036
- W. Nemitz and T. Whaley, Varieties of implicative semilattices, Pacific J. Math. 37 (1971), 759–769. MR 311522
- W. Nemitz and T. Whaley, Varieties of implicative semi-lattices. II, Pacific J. Math. 45 (1973), 303–311. MR 332594
- Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
- A. F. Pixley, Distributivity and permutability of congruence relations in equational classes of algebras, Proc. Amer. Math. Soc. 14 (1963), 105–109. MR 146104, DOI 10.1090/S0002-9939-1963-0146104-X
- Helena Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. MR 0446968
- J. Schmidt, Quasi-decompositions, exact sequences, and triple sums of semigroups. I. General theory, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 365–397. MR 0472657
- J. Schmidt, Quasi-decompositions, exact sequences, and triple sums of semigroups. I. General theory, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 365–397. MR 0472657
- Jürgen Schmidt, Binomial pairs, semi-Brouwerian and Brouwerian semilattices, Notre Dame J. Formal Logic 19 (1978), no. 3, 421–434. MR 491382
- Jürgen Schmidt and Constantine Tsinakis, Relative pseudo-complements, join-extensions, and meet-retractions, Math. Z. 157 (1977), no. 3, 271–284. MR 472618, DOI 10.1007/BF01214357
- Dorothy P. Smith, Meet-irreducible elements in implicative lattices, Proc. Amer. Math. Soc. 34 (1972), 57–62. MR 291035, DOI 10.1090/S0002-9939-1972-0291035-3
- Constantine Tsinakis, Brouwerian semilattices determined by their endomorphism semigroups, Houston J. Math. 5 (1979), no. 3, 427–436. MR 559982
- Alasdair Urquhart, Implicational formulas in intuitionistic logic, J. Symbolic Logic 39 (1974), 661–664. MR 360224, DOI 10.2307/2272850
- Andrzej Wroński, The degree of completeness of some fragments of the intuitionistic propositional logic, Rep. Math. Logic 2 (1974), 55–61. MR 384527
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 103-126
- MSC: Primary 06A12; Secondary 03G10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0628448-3
- MathSciNet review: 628448