A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves
HTML articles powered by AMS MathViewer
- by Walter D. Neumann
- Trans. Amer. Math. Soc. 268 (1981), 299-344
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632532-8
- PDF | Request permission
Abstract:
Any graph-manifold can be obtained by plumbing according to some plumbing graph $\Gamma$. A calculus for plumbing which includes normal forms for such graphs is developed. This is applied to answer several questions about the topology of normal complex surface singularities and analytic families of complex curves. For instance it is shown that the topology of the minimal resolution of a normal complex surface singularity is determined by the link of the singularity and even by its fundamental group if the singularity is not a cyclic quotient singularity or a cusp singularity.References
- F. Bonahon and L. Siebenmann, Les noeuds algébriques (in preparation).
- P. E. Conner and Frank Raymond, Injective operations of the toral groups, Topology 10 (1971), 283–296. MR 281218, DOI 10.1016/0040-9383(71)90021-8 D. Eisenbud and W. Neumann, Fibering iterated torus links, preprint, 1978; rev. ed., Toral links and plane curve singularities (in preparation). —, Graph links (in preparation).
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- Friedrich E. P. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183–281. MR 393045
- F. Hirzebruch, W. D. Neumann, and S. S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, Vol. 4, Marcel Dekker, Inc., New York, 1971. Appendix II by W. Scharlau. MR 0341499
- M. Inoue, New surfaces with no meromorphic functions. II, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 91–106. MR 0442297
- Ulrich Karras, Klassifikation $2$-dimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen, Math. Ann. 213 (1975), 231–255 (German). MR 379894, DOI 10.1007/BF01350873
- Rob Kirby, Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, R.I., 1978, pp. 273–312. MR 520548
- Robion Kirby, A calculus for framed links in $S^{3}$, Invent. Math. 45 (1978), no. 1, 35–56. MR 467753, DOI 10.1007/BF01406222 K. Kodaira, On compact analytic surfaces. II, Ann. of Math. (2) 77 (1963), 563-626. W. D. Neumann, ${S^1}$-actions and the $\alpha$-invariant of their involutions, Bonner Math. Schriften, vol. 44, Bonn, 1970. —, Fibering graph manifolds (in preparation).
- Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125–144. MR 585657
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 163–196. MR 518415
- Walter D. Neumann and Steven H. Weintraub, Four-manifolds constructed via plumbing, Math. Ann. 238 (1978), no. 1, 71–78. MR 510309, DOI 10.1007/BF01351456
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- Peter Orlik and Frank Raymond, Actions of $\textrm {SO}(2)$ on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 297–318. MR 0263112
- P. Orlik, E. Vogt, and H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49–64 (German). MR 212831, DOI 10.1016/0040-9383(67)90013-4
- Alois Scharf, Zur Faserung von Graphenmannigfaltigkeiten, Math. Ann. 215 (1975), 35–45 (German). MR 377918, DOI 10.1007/BF01351789
- Rabe von Randow, Zur Topologie von dreidimensionalen Baummannigfaltigkeiten, Bonn. Math. Schr. 14 (1962), v+131 (German). MR 155304
- Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 285536, DOI 10.1016/0040-9383(72)90022-5
- Friedhelm Waldhausen, Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I, II, Invent. Math. 3 (1967), 308–333; ibid. 4 (1967), 87–117 (German). MR 235576, DOI 10.1007/BF01402956
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Gayn B. Winters, On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215–228. MR 357406, DOI 10.2307/2373628
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 299-344
- MSC: Primary 32B30; Secondary 14J17, 32J15, 57N10
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632532-8
- MathSciNet review: 632532