## Les modèles dénombrables d’une théorie ayant des fonctions de Skolem

HTML articles powered by AMS MathViewer

- by Daniel Lascar PDF
- Trans. Amer. Math. Soc.
**268**(1981), 345-366 Request permission

## Abstract:

Let $T$ be a countable complete theory having Skolem functions. We prove that if all the types over finitely generated models are definable (this is the case for example if $T$ is stable), then either $T$ has ${2^{{\aleph _0}}}$ countable models or all its models are homogeneous. The proof makes heavy use of stability techniques.## References

- Daniel Lascar,
*Sur les théorie convexes “modèles complètes”*, C. R. Acad. Sci. Paris Sér. A**278**(1974), 1001–1004 (French). MR**349376**
—, - Daniel Lascar and Bruno Poizat,
*An introduction to forking*, J. Symbolic Logic**44**(1979), no. 3, 330–350. MR**540665**, DOI 10.2307/2273127 - Saharon Shelah,
*Classification theory and the number of nonisomorphic models*, Studies in Logic and the Foundations of Mathematics, vol. 92, North-Holland Publishing Co., Amsterdam-New York, 1978. MR**513226** - Saharon Shelah,
*End extensions and numbers of countable models*, J. Symbolic Logic**43**(1978), no. 3, 550–562. MR**503792**, DOI 10.2307/2273531 - R. L. Vaught,
*Denumerable models of complete theories*, Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), Pergamon, Oxford; Państwowe Wydawnictwo Naukowe, Warsaw, 1961, pp. 303–321. MR**0186552**

*Généralisation de l’ordre de Rudin-Keisler aux types d’une theorie*, Colloq. Internat. C.N.R.S., No. 249, Clermont-Ferrand, 1975, pp. 73-81. —,

*Les modèles dénombrables d’une théorie superstable ayant des fonctions de Skolem*, C. R. Acad. Sci. Paris Sér. A

**289**(1979), 655-658.

## Additional Information

- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**268**(1981), 345-366 - MSC: Primary 03C15; Secondary 03C45
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632533-X
- MathSciNet review: 632533