Probability and interpolation
HTML articles powered by AMS MathViewer
- by G. G. Lorentz and R. A. Lorentz
- Trans. Amer. Math. Soc. 268 (1981), 477-486
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632539-0
- PDF | Request permission
Abstract:
An $m \times n$ matrix $E$ with $n$ ones and $(m - 1)n$ zeros, which satisfies the Pólya condition, may be regular and singular for Birkhoff interpolation. We prove that for random distributed ones, $E$ is singular with probability that converges to one if $m$, $n \to \infty$. Previously, this was known only if $m \geqslant (1 + \delta )n/\log n$. For constant $m$ and $n \to \infty$, the probability is asymptotically at least $\tfrac {1} {2}$.References
- K. Atkinson and A. Sharma, A partial characterization of poised Hermite-Birkhoff interpolation problems, SIAM J. Numer. Anal. 6 (1969), 230–235. MR 264828, DOI 10.1137/0706021
- George David Birkhoff, General mean value and remainder theorems with applications to mechanical differentiation and quadrature, Trans. Amer. Math. Soc. 7 (1906), no. 1, 107–136. MR 1500736, DOI 10.1090/S0002-9947-1906-1500736-1
- Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30. MR 144363
- Samuel Karlin and John M. Karon, Poised and non-poised Hermite-Birkhoff interpolation, Indiana Univ. Math. J. 21 (1971/72), 1131–1170. MR 315328, DOI 10.1512/iumj.1972.21.21090
- J. H. B. Kemperman, Moment problems for sampling without replacement. I, Nederl. Akad. Wetensch. Proc. Ser. A 76=Indag. Math. 35 (1973), 149–164. MR 0345259
- G. G. Lorentz, Birkhoff interpolation and the problem of free matrices, J. Approximation Theory 6 (1972), 283–290. MR 340889, DOI 10.1016/0021-9045(72)90061-5
- G. G. Lorentz, The Birkhoff interpolation problem: new methods and results, Linear operators and approximation, II (Proc. Conf., Math. Res. Inst., Oberwolfach, 1974) Internat. Ser. Numer. Math., Vol. 25, Birkhäuser, Basel, 1974, pp. 481–501. MR 0393939
- G. G. Lorentz, Coalescence of matrices, regularity and singularity of Birkhoff interpolation problems, J. Approximation Theory 20 (1977), no. 2, 178–190. MR 454452, DOI 10.1016/0021-9045(77)90073-9
- G. G. Lorentz and S. D. Riemenschneider, Recent progress in Birkhoff interpolation, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp. 187–236. MR 553421
- G. G. Lorentz and S. D. Riemenschneider, Probabilistic approach to Schoenberg’s problem in Birkhoff interpolation, Acta Math. Acad. Sci. Hungar. 33 (1979), no. 1-2, 127–135. MR 515126, DOI 10.1007/BF01903387
- Georg Gunther Lorentz and K. L. Zeller, Birkhoff interpolation, SIAM J. Numer. Anal. 8 (1971), 43–48. MR 295529, DOI 10.1137/0708006
- Rudolph A. Lorentz, Interpolation and probability, Approximation theory, III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), Academic Press, New York-London, 1980, pp. 595–600. MR 602775
- I. J. Schoenberg, On Hermite-Birkhoff interpolation, J. Math. Anal. Appl. 16 (1966), 538–543. MR 203307, DOI 10.1016/0022-247X(66)90160-0
- R. J. Serfling, Probability inequalities for the sum in sampling without replacement, Ann. Statist. 2 (1974), 39–48. MR 420967
Bibliographic Information
- © Copyright 1981 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 268 (1981), 477-486
- MSC: Primary 41A05; Secondary 05B20, 15A52, 60C05
- DOI: https://doi.org/10.1090/S0002-9947-1981-0632539-0
- MathSciNet review: 632539