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DIRAC QUANTUM FIELDS ON A MANIFOLD1

BY

J. DIMOCK

Abstract. On globally hyperbolic Lorentzian manifolds we construct field opera-

tors which satisfy the Dirac equation and have a causal anticommutator. Ambigui-

ties in the construction are removed by formulating the theory in terms of C*

algebras of local observables. A generalized form of the Haag-Kastler axioms is

verified.

Introduction. A Lorentzian manifold is a four dimensional manifold TV/ together

with a pseudo-Riemannian metric g of signature ( + , —, —, — ). Such manifolds

are widely used as models for space-time. In particular in the absence of

boundaries and gravitational fields one uses M = R4 and g = tj = Minkowski

metric which has components {r)ab} = diag(l, -1,-1,-1).

We are interested in formulating quantum field theories on general Lorentzian

manifolds. This means giving up many ideas familiar from the usual Minkowski

space treatments. Thus there are no Poincaré transformations on M, no vacuum,

no particle states, and so forth. All one is left with are the field equations. These

are to be solved taking as data a representation of the CCR or CAR over a

space-like hypersurface (CCR = canonical commutation relations, CAR =

canonical anticommutation relations). For linear equations this quantum problem

can be reduced to a corresponding classical problem for which solutions can be

constructed in favorable cases. In the nonlinear case very singular formal solutions

can be exhibited which one might hope to make rigorous.

The procedure sketched above is fraught with ambiguities. What hypersurface

should one take? what representation of the CCR/CAR? and so forth. In general

there is no natural choice and one should show that all choices lead to the same

theory. To do this in a fundamental way it seems necessary to abandon the field

operators themselves and instead consider the C* algebras that they generate. This

algebraic approach was originally formulated for Minkowski space and seems all

the more appropriate here.

In the Haag-Kastler approach [10] one focuses on the C* algebras associated

with local regions of space-time-the algebras of local observables. The original

formulation on Minkowski space consisted of a list of structural properties or

axioms which such algebras ought to obey. In a recent paper [6] we have proposed

a generalization of these axioms to Lorentzian manifolds. The scalar field was

given as an example.
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134 J. DIMOCK

The present paper continues this work and studies Dirac quantum fields in this

algebraic setting. The contents of the paper are as follows:

§1. The Dirac equation. We develop the mathematical concepts of spin structures,

spin connections, etc., which are needed to formulate the classical Dirac equation.

Our treatment roughly follows the original work of Lichnerowicz [16].

§11. Classical solutions. For globally hyperbolic manifolds we construct funda-

mental solutions for the Dirac operator using a general theorem of Leray [18]. We

also show that the global Cauchy problem is well posed.

§111. Quantum solutions. Starting with a representation of the CAR over a

Cauchy hypersurface and using the fundamental solutions we construct quantum

field operators which solve the Dirac equation and have a causal anticommutator.

This construction is similar to the one given for the scalar quantum field by Isham

[13] and Dimock [6].

§IV. Local algebras. From the fields we construct C* algebras of local observa-

bles. These structures are shown to be independent of the representation of the

CAR, the Cauchy surface, and the choice of spin structure. The equivalences are

conveniently formulated in terms of category theory. Finally the generalized

Haag-Kastler axioms are verified.

I. The Dirac equation.

A. Spinors. We review the geometric setting for the Dirac equation (see [4], [16]).

Our starting point is a representation of the Dirac-Clifford algebra as given by

4x4 matrices y0, ■ ■ ■ , y3 satisfying

i1-1) Jayb + YfrYfl = Mob1-

Given any two such representations ya, y'a there is a nonsingular matrix M (unique

up to a multiple of the identity) such that y'a = MyaM~x [19]. We generally work

with a fixed but arbitrary representation. The ya are used to define a covering

group for the Lorentz group as we explain next, and later to construct a differential

operator whose square is a wave operator.

Given ya we consider the Lie group Spin consisting of all matrices S satisfying

det S1 = 1 and

(1-2) V' = vX
for some real numbers A*. From (1.1) we find that 7\cdA.cahdb = r/^ which says that

the matrix A = {A*} belongs to the Lorentz group £. The map S —» A(S) is a 2-1

homomorphism from Spin onto £. In the following we restrict attention to Spin,,,

the connected component of the identity in Spin, and its image £n which is the

connected component of the identity in £. (£q is often written £!,., and SpiiLj is

isomorphic to SL(2, C).)

Let (M, g) be an oriented time-oriented Lorentzian manifold, and let FM be the

bundle of oriented time-oriented orthonormal frames in the tangent space TM. An

element | of FM consists of four tangent vectors (£q, . . . , £3) at a point in M which

are oriented, which have £0 in the forward cone, and which satisfy gfa, £6) = tj^.

There is a right action of £q on FM defined by (RAQa = £/,A*, and with this choice

FM is a principal £q bundle over M.
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A spin structure for (M, g) is a pair (SM, p) consisting of a principal SpiiVj

bundle SM over M (the spin frame bundle) and a bundle homomorphism p:

SM ~¥ FM which preserves the base point and which satisfies p ° Rs = R\(S) ° P

where Rs is the right action of Spin^ on SM. Spin structures are not unique. Spin

sructures (SxM,px) and (S2M,p2) are said to be equivalent if there is a SpinQ-bun-

dle isomorphism t: SxM -» S2M preserving the base point such that/), = p2 ° t.

The existence of spin structures depends on the topology of the manifold (e.g. [1],

[17]). Spin structures exist if and only if the second Stieffel-Whitney class for M

vanishes. We make even stronger assumptions later on. Equivalence classes of spin

structures may be labeled by elements of the cohomology group HX(M, Zj). If this

is nontrivial one speaks of exotic spin structures. The possible physical significance

of exotic spin structures has been recently discussed in the literature (e.g. [5], [20]).

The Dirac spinor bundle is now the associated vector bundle DM =

(SM X C*)/S. That is DM is the orbit space for the action Rs X S~x of Spiiif, on

SM X C4. A spinor field is a cross-section of DM, i.e. a smooth map u: M-» DM

such that u(x) G DMX where DMX is the fiber over x. The space of all spinor fields

is denoted CX(DM).

We also introduce the dual vector bundle D*M = \J x D*MX where D*MX is

the dual vector space to DMX. A cospinor field v is a cross-section of D*M, and the

space of all such cross-sections is denoted CM(D*M). If m G C°°(DM) and

v G CX,(D*M) we may form a function vu = v(u) G C°°(M) by (vu)(x) =

v(x)(u(x)).

A local cross-section E: U c M -» SM determines a moving frame (E¡, . . ., E4)

in DM. Each EA is a local cross-section EA: U-* DM defined by EA(x) =

i(E(x), icA) where <o,, . . . , w4 is the standard basis for C4 and /: SM XC4-) DM

is the canonical injection. Any u G CX(DM) can be expressed as u = uAEA

(summation convention) where uA G Ca>(M). If E' is another cross-section we

have £" = RsiE for some S: U <~) U' -» SpitÍQ. Then the frames are related by

E'A = EB(S~X)A and the components by u'A = SBuB.

By taking tensor products of DM, D*M, TM, T*M we may form a mixed

spinor-tensor algebra. A cross-section E of SM determines moving frames in each

of these bundles. We have (EA) in DM as defined above, the dual frame (EB) in

D*M satisfying EB(EA) = 8A, the orthonormal frame (ea) = e = p ° E in TM,

and the dual frame (eb) in T*M satisfying eb(ea) = 8*. Under a change of section

given by S: U n t/' -> Spir^ we have the change of frames

EA = EB(S-X)BA,       (E')B = SBEA,

e'a = eb{A(S-x)l,       (e'f = (A(S))¿e"

and corresponding changes in the components of any spinor-tensor. For example if

/ G C°°(T*M <8> Z>M <8> D*M) is expressed in one frame as / = fABe" <8 EA <8>

EB, then the components in the second frame are given by

(/')!*■ = (Ms-l))W(s-%fa.
Tensor indices may be raised or lowered using tj^ = 7¡ab.
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In the following we will be particularly interested in the spinor-tensor y which

has components yAB = (yaYB in any frame (use equation (1.2)).

We also note that we can contract spinor-tensors by summing over dual indices.

For example vu is expressed as vAuA. If a is a vector field we define a to be the

contraction with y, so that aB = aayAB. For a spinor u, (au) is the spinor with

components (au)A = (a)ABuB. For a cospinor v, av has components (av)B = vA(a)g.

Finally if vu has compact support we may define <u, m> = /M vu dV where dV is

the volume element determined by g.

B. Adjoint spinors. The adjoint matrices y* also satisfy (1.1). Thus we have

y* = ßyaß " ' for a unique ß with det ß = 1. We also have

(ya)* = (S-xybA(S)baS)*

= S*ßybß-xA(S)ba(S-1)* = ß'ya(ß')~l

where ß' = S*ßS. Since also det ß' = 1 we have ß' = ß, that is S*ßS = ß.

Given u G C°°(DM) we now define^n adjoint spinor u+ G CM(D*M). In a

local frame u = uAEA and we set uB =uAßAB where ßAB are the matrix elements

of ß. Under a change of frame (w')b = u^(S~xYB (since S*ß = ßS~x). Thus

u+ = uBEB defines a frame independent covariant spinor. (Note. Our notation

u+ = üß differs from the usual physics notation which would be it = u +ß.)

Proposition 1.1. If n is a forward time-like vector field on M then (ux,u2) =

<^ux+,ííu2y is an inner product on C™(DM).

Proof. We must show that <w+,h'm> is positive definite and it suffices that

u+jiu is positive definite for u G DMX. Going to a particular frame we must show

that (u, ß&u) = (u, ßyau)na is positive definite for u G C4. Here (•, •) is the usual

inner product on C4, and the conditions on n are nanbr)ab > 0 and n° > 0.

First suppose that we have one of the standard representations with y£ = y0 and

y* = -ya, a = 1, 2, 3, so that ß = y0. We may assume n"^^ = 1 and choose

A£na = ô0°. If S G SpiiLj satisfies A(S) = A then S#S~X = y0.

Thus we have (u, ß#u) = (u, ßS~xy0Su) = (Su, ßy0Su) = (Su, Su) > 0 with

equality iff Su = 0, i.e. u = 0.

Now consider an arbitrary representation y'a = M~xyaM. Then (y'a)* =

ß'y'aißT1 where ß' = M*ßM\det M\~2. Then

(w, ß'fi'u) = (Mu, /?í(TV/«)|det M\~2 > 0

with equality iff Mu = 0, i.e. u = 0.

C. Connections. The metric g determines a connection on M. This can be

regarded as a covariant derivative V: C°°(TM) -> C°°(T*M <8> TM). If e is a local

orthonormal frame we have

Vea = <o* ®eb = T»caec <8> eb

which defines connection forms ub and Christoffel symbols T^a. Alternatively the

connection can be regarded as a Lie(£g) valued one-form <o on FM satisfying

certain properties. Then e*(cc) is a Lie(£o) valued one-form on M whose matrix

elements are just icb.
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The spinor connection a is the pull-back of « to the spin-frame bundle SM. We

put o = (A')~xp*(u>) where A' is the isomorphism from LieiSpm,,) to Lie(£o). One

can check that a is a connection form on SM. If E is a local cross-section then

E*(a) is a Lie(Spino) valued one-form on M. The matrix elements are one-forms

denoted aA. We now define a covariant derivative

V: C°°(DM)^C°°(T*M ® DM)

by VEA = of ® EB = a^e" ® ^ which will be independent of E. If e = p ° E

then £*(a) = (A')~xe*(u>) which enables one to compute

„* —    ir* „ß ^dc
°o¿  —      4l adtbCI      A-

If V,,«-4 are the components of V(uAEA) = (duA)EA + uAVEA we have v^k"4 =

dauA + oABuB where 9J = df(ea).

The definition of the covariant derivative can be extended to the full spinor-

tensor algebra in the usual way. The building blocks are Vf = df for functions,

together with

Vea = w* 8 e6,        Ve* = -<o* S e\

VEA = of 8 £g,        V£B = -or* 8 £"\

and these are pieced together using the Leibniz rule. For example if / is a

spinor-tensor with components fAB as before then the components of Vf denoted

Vá are V JAB = dJAB - VjfB + o¿X ~ f¿>°&- One can show from this that

Vy = 0.

D. The Dirac operator. We now define a differential operator V on spinors or

cospinors by applying V followed by contraction with y. In terms of components

(Vuf = y^BVauB, and (Vv)B = (Vaü/4)ya/lB. Thus with spinor indices suppressed

we have

(1 3) *« = y"VaM = y'a« + aau),

Vv = (Vav)ya = (dav - voa)y°.

Using /3ya = (ya)*/? and ßaa = ~a*ß we obtain that Vu+ = (Fh)+.

The Dirac equation for spinors m or cospinors v is

(1.4) (-iV + m)u = 0,        (iV + m)v = 0

where the mass m is any real number. A spinor u is a solution if and only if u+ is a

solution. We immediately note the following important identity [16]

(1.5) (~iV +m)(iW +m)u = (□ -\R + m2)u

where □ is the spinor wave operator given by

(1.6) (□«)" = ^VaVbuA.

In leading order this is just the usual wave operator.
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We also note the following integral identity:

Proposition 1.2. Let u G C'X(DM), v G C°°(D*M) and let D c M have

smooth boundary dD with outward normal n and volume element dS. If supp u n

supp v n D is compact then

(1.7) -i f  vyiu dS= f (v(-iV + m)u - ((iV + m)v)u) dV.
JdD J D

Proof. Since covariant differentiation commutes with contraction, and since

Vy = 0 we have Va(vy"u) = v(Vu) + (Vv)u. Now multiply by -/, integrate over

D, and use Gauss's theorem to obtain the result for m = 0. The case m =£ 0 follows

trivially.

E. Distributions. We consider the spaces C0°°(Z)M) and C(f(D*M) of sections

with compact support. These are given the topology of uniform convergence of all

derivatives on a fixed compact set. The section distributions are the continuous

linear functionals on these spaces. Any u G C°°(DM) defines such a distribution

on A G C™(D*M) by u(h) = <A, w>. Furthermore the functional is zero if and

only if u = 0. Thus we have an identification of Cco(DM) with a subspace of

[C()0(D*M)]'. Correspondingly we introduce the notation

C~°°(DM) =[C¿°(D*M)]',       C-°°(D*M) = [C^(DM)}'.

We give CX(DM) and Cco(D*M) topologies based on uniform convergence of

all derivatives on any compact set. The dual spaces are denoted

C0-°°(DM) = [CC°(D*M)]',       C0-°°(D*M) =[C°°(DM)]'.

These can be shown to consist of the section distributions with compact support.

If/ G Cf(DM), h G C0°°(D*M), the identity (1.7) gives

(1.8) <h,Xf>--<*h,f}.

This shows that we may continuously extend V to C~M(DM) or C~°°(D*M) by

defining V = -(V)'.

II. Classical solutions.

A. Fundamental solutions. To study solutions of the Dirac equation we restrict to

space-times (M, g) which are globally hyperbolic in the sense of Leray [3], [18].

This implies that spin structures (SM, p) exist and that S M is a trivial bundle [8],

[14] (but not that all structures are equivalent). The global hyperbolicity also gives

the existence of fundamental solutions for the Dirac equation due to a general

theorem of Leray. Actually the theorem is valid for strictly hyperbolic operators

and so does not apply directly to (-iV + m); however by squaring the operator we

can reduce the question to the strictly hyperbolic case. The result is:

Theorem 2.1. (a) (-iV + m) on CX(DM) has unique fundamental solutions S±:

Cf(DM) -+ C^DM) satsfying

(-iV + m)S ± = S ±(-iV + m) = / on Cg>(M),       supp(S */) c J ±(supp/).

(b) Similarly (iV + m) on C'X(D*M) has unique fundamental solutions S±:

C^(D*M) -* C°°(D*M).
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Note. For any K c M, J ±(K) is the set of all points in M which can be reached

by a forward (backward) directed causal curve. A causal curve is a smooth curve

whose tangent vectors are either time-like or null.

Proof (cf. [24]). First we show existence of right fundamental solutions. We pick

a global spin frame E. Then (-iV + m) can be regarded as the operator on

CX(M, C4) given by (1.3) and it suffices to find S±: C0°°(A/, C4)^ C=°(/v/, C4)

satisfying the stated conditions. Consider the operator rj-j^ + m2 on C°°(M, C4)

as given by (1.6). In leading order the operator is diagonal and is given by 17 "^„di

with respect to the orthonormal frame e = p ° E, or by gab(d2u/dxadxb) with

respect to any local coordinate frame. Since g is globally hyperbolic Leray's

theorem applies [18, §111] and we conclude that there exist E±: C™(M, C4)-»

C'X(M, C4) which are fundamental solutions for \Z1-\R + m2 and have the correct

support. Then S± = (iV + m)E± satisfies (-iV + w)5'± = / and also has the

correct support. This supplies S ± on C^(DM), and S ± on C0°°(Z)*A/) is similar.

To show that the right fundamental solutions are left fundamental solutions we

note that, for h G C0°°(£>*M),/ G C¿°(DM) we have

(sHj) = (sH, (-¿v +m)sy) = {h, s*/>.

Here we use that suppíS1 ±h) n suppíS *f) is compact, a consequence of the global

hyperbolicity. Then by taking the adjoint of (iV + m)S± = I on C™(D*M) we

obtain S±(-iV + m) = I on C™(DM). Thus S± is a left fundamental solution.

The uniqueness follows similarly.

Remark. The operators S± on Cif(D*M) have adjoints (S*)': C0-°°(Z)M)->

C~°°(DM). Since <S ±h, /> = <A, S */> these provide extensions of S * to distrib-

utions and we have (S ±)' = S +.

We also define the operator S = S+ - S~ on C¿°(DM) and Cq^DM). This

is called the propagator and satisfies 5" = -S.

B. The Cauchy problem. We now construct solutions for the Cauchy problem in

three steps: (1) a weak integral identity, (2) a strong existence theorem, and (3) a

reformulation of the integral identity. First we need some definitions.

A Cauchy surface 2 for (M, g) is a space-like hypersurface such that every

endless causal curve intersects it exactly once. The global hyperbolicity implies the

existence of C° Cauchy surfaces [9], [11]. We assume that there are also C°°

Cauchy surfaces and consider them exclusively.

Given S let D S and Z)*2 be the vector bundles obtained by restricting DM,

D*M to 2. We let p be the restriction operator on the various spaces, e.g. 0:

C00(Z)*A/)^C00(D*2). If « G C°°(02), v G C°°(Z>*2) and vu has compact

support we set <u, w> = /2 vu dS, where dS is the induced volume element on 2.

Finally let n be the forward normal on 2.

Proposition 2.2. Let u G CX(DM) satisfy (-iV + m)u = 0, and pu = u0 G

C°°(Z)2). Then for h G C¿°(D*M),

(A, u) = i(#pSh, H0>.
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Proof. In the identity (1.7) we put D = 2~ =J "(2) and v = S+h. The region

supp S +h n 2" c J +(supp A) n 2~ is compact since 2 is a Cauchy surface [11].

Thus we have

j   hudV = if(S+h)#u0.

Similarly with D = 2+ = J +(2) and u = Slwe have

f  hudV = -if(S-h)#uQ.

Adding the identities gives the result.

Theorem 2.3. Let u0 G C0°°(Z)2); iAen there exists a unique u G C°°(DM) so that

(-iV + m)u = 0   and   p(u) = u0.   Furthermore   supp u c y+(supp u0) U

y-(suppM0).

Proof. The uniqueness follows from the proposition and using the support

property for S one can similarly deduce the support. (See Appendix in [6].)

For existence we again choose a global spin frame which trivializes both DM and

Z)2. The problem is then, given u0 G C0OC(2, C4), to find u G CX(M, C4) satisfying

the equation and w|2 = u0. Using techniques developed for the Klein-Gordon

equation [6], one can prove that the Cauchy problem for (□ - \ R + m2)w = 0

has global solutions. (The proof is an elaboration of the usual construction using

energy inequalities). Let w be the solution with w|2 = 0 and dw/dn = -iyCuQ, and

let u = (iV + m)w. Then (-iV + m)u = 0 by (1.5). Note that since w = 0 on 2 we

have Vaw\1, = (3w/9«)na so Vh>|2 = #(dw/dn). Since dw/dn = -i#u0 and (n)2 =

1 we have Vw\2 = -iu0 which gives «|2 = u0.

Remark. The operator p has an adjoint p': Co~°°(.D2)-> C0"°°(DM). Then Sp'

maps C0_0C(Z)2) to C"°°(Z)Ai). The next result improves this.

Proposition 2.4. (a) Sp' restricts to a continuous operator from C"(Z)2) to

CX(DM).

(b) The solution of the Cauchy problem with data u0 G C0°°(Z)2) is u = -iSp'#u0.

(c) -ipSp'tf = Ion C0°°(Z)2).

(d) -iSp'#pS = S on C¿°(DM).

Proof. Let u G C°°(DM) be the solution of the Cauchy problem with data

u0 G C0°°(Z>2). Then Proposition 2.2 says that u = -iSp'tfu0 in the sense of

distributions. Since u0 is arbitrary this shows that -iSp'tf maps C0°°(Z)2) to

CX(DM) and hence so does Sp'. The continuity follows by the closed graph

theorem (cf. [4, p. 391]). This proves (a) and (b). Now (c) follows by applying p to

the identity in (b). Finally (d) follows by inserting u0 = pu to get u = -iSp'yipu for

any solution u with compact support on 2. Taking u = Sf,f G C™(DM), gives the

result.

III. Quantum solutions.

A. 7Ae CAR. For any Cauchy surface 2 we define an inner product on the space

C0M(Z)2) of spinors on 2 by

(/l,/2) = </,+ ,*/2> = <(tf/,)+,/2>
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where n is the forward normal to 2. The proof that this is positive definite follows

that of Proposition 1.1. Let %s be the completion of C0°°(Z)2) in this norm, and let

%¿ be the dual Hubert space. One can show that elements of C0°°(Z)*2) regarded

as distributions define elements of %¿ and that such elements form a dense

subspace in DQ.

A representation of the CAR over 2 is a representation of the CAR over the pair

%z, %¿. It consists of a Hilbert space % and continuous linear functions x:

%¿ -> B(%) (the bounded operators on %) and x*: 3Cs -> B(%) such that

x*(/)=[x(U •))]*

and such that the anticommutator satisfies (x(A), x*(/)} = <^>/) with all other

anticommutators equal to zero. (This formulation in terms of the dual Hilbert

space is due to Wightman [24].) Note that if / G C0°°(Z>2), then (/, •) G 3Q is just

(n/)+ so we have x*(/) = [x((X/)+)]*-

Example (Fock representation). Let DC0 = C, 3C = A"(%s) and % =

©"_0 DC.  We define x*> X  as creation and annihilation operators.  If <f> =

(<í>o> <i>i, <i>2- • • • ) G 5C then

(x(h)<t>)n = V/i + 1 <A, *„+,>,       (x*(/)*)„ = V^/A*B-i

where <A, <i>„+1> means evaluation on the first factor.

Note that for Minkowski space this Fock representation is different from the

usual Fock representation in which x is the sum of an annihilation operator for

particles and a creation operator for antiparticles.

B. The field operators. We now construct field operators satisfying the Dirac

equation using any representation x of the CAR as data. If we think of x as an

(operator-valued) distribution cross-section of £>2, then by analogy with the

classical problem we should define \j/ = -iSp'tfx- More precisely, for A G

C^(D*M) we define

4th) = iX(#pSh).

Note that supp(pSA) is compact (J±(K) n 2 is compact for compact K, Cauchy

surface 2) so that fipSh G C0°°(i)*2) c %¿. The field satisfies (-iV + m)4> = 0 in

the sense of distributions (i.e. \p((iV + m)h) = 0) since S(iV + m) = 0 on

Cf(D*M). If we also define, for / G C^(DM), 4>+(f) = [^(/+)]* then t//+ is

linear in/and satisfies (iV + m)\j/+ = 0. One can check that \p+ can be expressed

as \p+(f) = -ix*(pSf). The anticommutator can now be computed to be

{*(*), 4>+(f)} = <npSA, PSf) = -i(h, Sf)

where we use Proposition 2.4(d). (This form for the anticommutator was antic-

ipated by Lichnerowicz [16].)

If 2 is another Cauchy surface then the restriction of ^ to 2 is given by

x = pyp = -ipSp'Kx- This means, for A G C0°°(Z>*2), X(A) = ixfapSp'h). We also

define for/ G C0°°(£>2)

X*(f) =[x(fr/)+)]* = -iX*(pSp'kf).
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These expressions make sense since pSp' maps C0°°(£>2) (or C0°°(Z>*2)) to C0°°(D2)

(or C0°°(jD*2)). For the anticommutator we have

{m, x*(/)} = (psp'h,#psp'kf).
By the identity (1.7) we have that, for solutions u, v with compact support on 2,

{pv,fípu} = (pv,fipu}. Making this replacement above and using Proposition

2.4(c) the anticommutator is just <A,/>. Thus restriction to another surface gives a

representation of the CAR over that surface. Note that if 2 = 2 then x = X hy the

adjoint of Proposition 2.4(c).

We summarize our results for this section:

Theorem 3.1. Let (M, g, SM,p) be a globally hyperbolic manifold with spin

structure. Let (2, x) be a representation of the CAR over a Cauchy surface. Then

\p = -iSp'tfx is a solution of the Dirac equation with data x on 2, and with

anticommutator {\p(h), \p+(f)} = i~l(h, Sf).

IV. Local algebras.

A. Definitions. Let \p be the field operator defined in the previous theorem. We

now define for any open set 0 c M local field algebras by ÍF(© ) = C* algebra

generated by {4>(h): A G C™(D*M), supp h c 0}. These are all subalgebras of

'S = S(M). Another characterization of 'S is 'S = C* algebra generated by (x(A):

A G %¿) or (x(A): A G C0°°(Z)*2)}. Indeed if the latter algebra is denoted t, then

f C f by the definition \p(h) = ¡x(#pSh). On the other hand for any A, G

C0°°(D*2) there exists A G C^(D*M) such that ijtpSh = A, (see [6, Lemma A.3]).

Then we have x(A^ = »KA) which implies S c 'S and hence 'S = 'S.

The field algebras are not suitable as an algebra of observables since the algebras

for causally independent regions do not commute. We remedy this defect by

passing to subalgebras. There is some arbitrariness in the choice of the subalgebras,

but for definiteness we make the following choice. The algebra of observables for

0 C Mis

éE(0) = C* algebra generated by [\p + (f)\p(h)],       supp/, supp A c 0

and the full algebra is & = &(M).

Before proceeding with our study of these algebras we mention some related

literature which the reader may wish to consult. A slightly different algebraic

formulation for field theory on manifolds, also applicable to the Dirac field, has

been given by Isham [13], Kay [15], and Hajicek [12]. Bongaarts [2] gives an

algebraic treatment of the Dirac field on Minkowski space with external potentials.

The relation between the field algebras and algebras of observables on Minkowski

space has been studied in great generality by Doplicher, Haag, and Roberts [7]. For

the general philosophy of the algebraic approach there is Haag-Kastler [10] or

Segal [21].

B. Categories. We want to explore the circumstances under which the algebraic

structures we have defined are equivalent. To accomplish this it is convenient to

use the language of category theory. We introduce the following categories.
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C* Nets. An object is a collection of C* algebras {A(i)}ic, indexed by a

collection of subsets of a given set / such that A(i) c A(i') whenever / c /'. The

index set includes / so A¡ a A, for all /'. A morphism from {Al(i)}ic,i to

{A2(i)}icI is a C*-algebra isomorphism a: A¡ -^A¡ and a bijection/: /,-» 72

such that a[A,(/')] = A2(f[i]) for all i CZ Ix. Morphisms are composed by

(.a2>fi) ° (ai>/i) = («2 ° ai>/2 °/i)- A morphism in this category will be called a

net isomorphism.

Note that {S(6)}ecM and {6&(0)}6cM are objects in this category indexed by

the open subsets 0 c M. We abbreviate them as 'S(-) and &(■).

Lor. An object is a Lorentzian manifold (M, g) (always globally hyperbolic). A

morphism from (M¡,g¡) to (M2,g2) is a diffeomorphism k: Mx—*M2 such that

g\ = K*(gi)> i-e- a morphism is an isometry.

LorSpin. An object m = (M, g, SM, p) is a Lorentzian manifold (M, g) with spin

structure (SM,p). A morphism r from w, to w2 is a Spir^-bundle isomorphism t:

SlMl —» 52M2 such that the induced map t: TV/j —» TVf2 of the base spaces is an

isometry and such that the following diagram is commutative:

S]Ml     -^     S2M2

ÏP\ l/>2

FMX      Z      FM2

where rF is the Go-bundle isomorphism induced on the orthonormal frame bundles

by t. We call such a morphism t a spin structure isomorphism. Note that if

M j = M2 and f = id then t is an equivalence by our earlier definition,

LorSpinRep. An object is a pair (m, r) where m is an object in LorSpin and

r = (2, x) is a representation x of the CAR over a Cauchy surface 2 in M. A

morphism from (m„ r,) to (w2, r2) is just a morphism t: w, -» m2 in LorSpin which

we write as (t, r2, a^). Then the identity is (id, r, r) and the law of composition for

Tp 7«! —» w2 and t2: m2 —» w3 is

(T2> r3. r2>  ° (Ti, ^ /",) = (t2 » T„ r3, /",).

C. Functors. For each choice (w, r) of manifold with spin structure m =

(M, g, SM,p) and representation r = (2, x) we let \pmr be the field operator and

'S^, fm>r(0), &m,r, &„,(©) be the associated algebras.

Theorem 4.1. For any spin structure isomorphism t: mx -* m2 and any representa-

tions r¡ on mx and r2 on m2 there exists a unique isomorphism a(r, r2, rt) from *Sm r

to Sm . such thatm2,ri

«(T;r2,rI)(^m„ri(A)) = ^2(i*A)

where f : D*M{ —> D*M2 is the induced mapping on spinor bundles.

Proof. We shorten the notation to i/¡, = ip and Sj = S ,j = 1, 2. The proof

comes in three parts.

Part I. We consider the case w, = m2 = m and t = id. At first suppose also that

2, = 22 = 2, but that Xi and Xi are distinct representations of the CAR over %%.
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By a general theorem (see for example Slawny [22]) Xi and X2 generate the same C*

algebra. That is there is an isomorphism a : <Sl -» % such that a(xi(A)) = X2W-

Now consider the general case 2, =£ 22, Xi ^ X2- Let ^21: Q°°(^*^i) -*

C0°°(Z)*22) be defined by T2l = ift2p2Sp\. According to the discussion in §111,

Xi(A) = Xi(T2Xh) also defines a representation of the CAR over 2,, and since also

X2CO = Xi(Ti2k) we have Sx = S2. Let a be the isomorphism from <SX to ?F, such

that a(x,(A)) = x,(A), as above. Then a: % -» % and a(x,(A)) = Xi<<T2\h)- Finally

by the adjoint of Proposition 2.4(d) we have

aí>,(A)) = a(/Xl(íílp15A)) = xii-y^Sp'^^Sh)

= 'XiitiPiSh) = ^(A).

Thus we have constructed a(id, r2, r,).

Parí II. We now digress to develop some facts about spin-structure isomorphisms

t: w, —» m2. The Spir^-bundle isomorphism t: 5", A/j —>• S^A^ induces a vector

bundle isomorphism f : D,A/, -» D2M2 with the property that if £\, E2 are cross-

sections of S,Af|, S2^2 such that t^E,) = E2, then the associated moving frames

El^4, E2yA in D\MV D2M2 satisfy ft(ElA) = E2^. Here rt, f „ are the induced maps

on cross-sections defined by rt(E) = t ° E ° t"1 and f#(/) = f °/ ° f-1. We

have the general transformation law for spinors

The isomorphism t also induces a vector bundle isomorphism f : TMX —> rM2 by

f = Dr, and this induces a map f„ on vector fields. If e, = px ° £] and e2 =

/>2 ° £, are the orthonormal frames associated with Ev E2 as above then f^ela =

e2a. To see this note first that (iy£)a = f^, by definition so that i„e1 a = ((i>)„,ei)a.

The result then follows by

(Tr)*e\ = rF " P\ ° E\ ° f~' = Pi ° T ° E\ ° f_1 =7^2 ° E2 = e2

where we use the definition of t.

The maps f on Z>, A/, and TMX induce a map f on the full spinor-tensor algebra

which commutes with contractions and tensor products. In terms of bases de-

termined by Ex and E2 = t^-E,) we have for example iJ(fABe° 8 EXA 8 EB) =

UaB ° *~l)ei 8 E2A 8 Ef. Note in particular that f ,y, = y2.

Next we examine the effect of t on connections. Let t*, tf be the pull-back

operation on one-forms on S2M2, FM2 (not the pull-back of cross-sections). The

connection forms are related by tfu2 = w, and thus using p2 ° t = rF ° px we have

t*o2 = (A')~iT*p2*u2 = (A')~xp\*TFu2 = a,.

Since £2 " Í = t « £, it follows that f*(£2*a2) = ffa,. Now (f~')* (the pull-back

of one-forms) can also be written as f, (the push-forward of sections) in our

notation. Thus we have f+(oAB) = a2B and hence

i*(V,£M) = f,(o* 8 £La) = o£ 8 £2,B =V2£2^.

This shows that t+V, = V2f, and since fty, = y2 we have that fm(-iV1 + m) =

(-/'F2 + w)f „,. By the uniqueness of fundamental solutions:

f,Sf = S2±f,.
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Part III. Now we consider the general case m, =£m2, rx =£ r2, r: mx -> m2. Let

2, = i_1(22) and define f,: C0°°(Z>f 2,) -► C^(D^2) to be the push-forward of

cross-sections by r+h = f ° A ° f"1. We define a representation f, = (2,, x,) for

m\ by Xi(A) = X2(^*A). This together with x*(/) = X*(f*f) forms a representation

of the CAR. Indeed the anticommutator is

(i*h, rj) = f   (A/) o f"' rfK2 = f  hfdVx = <*,/>.

Furthermore îjkx = X2 and (ij)+ = ij+ and so

xf(/) = x2((^V)+)* = x2(^(*,/)+)* = x,((*/)+)*

as required. Since the transformation x2 —*Xi lS invertible we have Sx = <S2. We

also have

^i(A) - 'XifaPiSi A) = '^(t^iPiSiA)

= iX2{^2p2^*h) = ^2^*^).

Here we use ritSx = 52f „ from Part II.

Now let a = a(id, f„ /-,) be the isomorphism from Part I. Then a: <SX -> <SX and

«(^(A)) = ^(A). From above we see that a: CSX —> ÍF2 and a(iT/,(A)) = ip2(TtA).

Thus a is the required a(T, r2, /-,). Uniqueness follows since a is determined by its

action on the dense set of polynomials in \p.

Remarks. (1) Since f, maps the sections of D\*MX with support in 0 onto the

sections of D^M2 with support in f(0), we have that a(r, r2, rx) maps the poly-

nomials in <Sm r (0 ) onto the polynomials in Sm r (t(0 )), and hence that

«(^r2,rx)[smur¡(e)] = 'sm24r(e)).

This says that a(r, r2, rx) and f define a net isomorphism from <Sm   ,* to Sm r ,.y

(2) From ^+(f) = [«K/+)]* we obtain that a(r, r2, ^.(i)]"- <•,(**/) and

this gives

«(T,r2,.1)[^,(0)] = ^2,r2(T-(0)).

Thus we have a net isomorphism from &m¡   (•) to Qm^.y

(3) If t = id then f, = id and also f2„ °fu = (t2 ° t,)"„. This enables us to

show from the action of a on j that the identities

a(id, r, r) = id,

«(t2, r3, r2)a(rx, r2, rx) = a(r2 ° t„ r3, r,)

hold on polynomials in ^ and hence on the full algebras. Similar identities hold for

the net isomorphisms (a(r, r2, rx), t).

Thus we have proved the following result:

Theorem 4.2. The maps (m, r) -» Smr(-) and (m, r)^> 3,mr(-) together with

(t, r2, rx) -» (a(r, r2, rx), t) define functors from LorSpinRep to C* Nets.

This theorem makes precise the sense in which our algebraic structure does not

depend on special choices we have made. In particular specializing to f = id it says
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that the nets do not depend on equivalent spin structures, Cauchy surfaces, or

CAR representations. We also give another version of this result which singles out

a particular representation for each m.

Let r = f(m) be a choice function assigning representations to manifolds. We

define

<&(•) = ¿¡WO
and for t: mx —> m2 we define af(r): <Sfm —> <S/m  by o/(t) = a(r, fim^, f(mx)).

Theorem 4.3. (a) For any choice function f, the map m—>@fm(-) together with

t —> (o/(t), f) defines a functor from LorSpin to C* Nets.

(b) Different choice functions give naturally equivalent functors.

Proof, (a) is straightforward. For (b) let /, g be two choice functions. The

assertion is that for every m there is a net isomorphism ßm from (£{,(•) to ££*(•)

such that the following diagram commutes for each t: mx -» m^.

<(•)        i'        <%,(•)

(«y(T),T-)| i(«'(T),f)

<(•)        -        É^O)

This is fulfilled by taking ßm = (a(ià, g(m), f(m)), id).

Remark. For the algebra of observables it is possible to continue and make

choices of spin structure for each manifold to obtain a family of equivalent

functors from Lor to C* Nets. We do not include details.

D. Axioms. We now collect the most important properties of our algebras. These

are properties which might be expected to hold for any quantum field theory on a

Lorentzian manifold (not necessarily globally hyperbolic). They are the generalized

Haag-Kastler axioms [6], [10].

Theorem 4.4. &(■) — &mr(-) satisfies the following properties:

(1) &(■) is an increasing net of C* algebras indexed by a collection of open sets

0 c M.
(2)& = S(M) is primitive.

(3) If 0, © ' are causally independent then [#(© ), #(0 ')] = 0.

(4) // 0 is causally dependent on 0 ' then <£(©) C #(©')•

(5) For any isomorphism between space-time structures there is a functorial isomor-

phism between the associated algebraic structures.

Proof. (1) is trivial. (2) follows since C* algebras generated by the CAR are

primitive. For (3) we compute

[V+(/,)^(A1),^+(/2)^(A2)] - -/<*„ 5/2>^+(/,)^(A2) + /<A2,S/,>^+(/2)^(A,).

Let /, hj have support in ©,, j = 1,2, and suppose that ©,, 02 are causally

independent, i.e. there is no causal curve joining a point in 0, to a point in 02. By

the support properties of 5 we have  <A,, 5/2) = <A2, 5/,> = 0 so  the above
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commutator vanishes. It follows that [$(©,), <£(©2)] = 0. A weak form of (4) is

proved in [6] for the scalar field and the same proof works here. Finally we regard

(5) as being fulfilled by Theorem 4.3(a).

References

1. S. Avis and C Isham, Quantum field theory and fibre bundles in a general space-time, Recent

Developments in Gravitation (Levy and Deser, eds.), Plenum Press, New York, 1979.

2. P.  Bongaarts,  The electron-positron field coupled to external electromagnetic potentials as an

elementary C*-algebra theory, Ann. Physics 56 (1970), 108-139.

3. Y. Choquet-Bruhat, Hyperbolic differential equations on a manifold, Battelle Rencontres (DeWitt

and Wheeler, eds.), Benjamin, New York, 1968.

4. Y. Choquet-Bruhat, C. DeWitt-Morette and M. Dillard-Bleick, Analysis, manifolds, and physics,

North-Holland, New York, 1977.

5. B. Dewitt, C. F. Hart and C. J. Isham, Topology and quantum field theory, preprint.

6. J. Dimock, Algebras of local observables on a manifold, Comm. Math. Phys. 77 (1980), 219-228.

7. S. Doplicher, R. Haag and J. Roberts, Fields, observables, and gauge transformations. I, II, Comm.

Math. Phys. 13 (1969), 1; 15 (1969), 173.
8. R. Geroch, Spinor structure of space-times in general relativity. I, II, J. Math. Phys. 9 (1968), 1739;

11 (1970), 343.
9._, The domain of dependence, J. Math. Phys. 11 (1970), 437.

10. R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5 (1964),

848.
11. S.  Hawking and G. Ellis,  The large scale structure of space-time, Cambridge Univ. Press,

Cambridge, 1973.
12. P. Hajicek, Observables for quantum fields on curved backgrounds, Lecture Notes in Math., vol.

676, Springer-Verlag, Berlin, 1978, pp. 535-566.
13. C. Isham, Quantum field theory in curved space-time, Lecture Notes in Math., vol. 676, Springer-

Verlag, Berlin, 1978, pp. 495-512.

14._, Twisted quantum fields in a curved space-time, Proc. Roy. Soc. London Ser. A 362 (1978),

383.
15. B. Kay, Linear spin-zero quantum fields in external gravitational and scalar fields. I, II, Comm.

Math. Phys. 62 (1978), 55; 71 (1980), 29.
16. A. Lichnerowicz, Champs spinoriel et propagateurs, Bull. Soc. Math. France 92 (1964), 11.

17. _, Topics on space-times, Battelle Recontres (DeWitt and Wheeler, eds.), Benjamin, New

York, 1968.

18. J. Leray, Hyperbolic differential equations, lecture notes, Princeton, 1953.

19. W. Pauli, Contributions mathématiques à la théorie des matrices de Dirac, Ann. Inst. H. Poincaré VI

(1963), 8.
20. H. Petry, Exotic spinors in superconductivity, J. Math. Phys. 20 (1979), 231.

21. I. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I,

Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), 121.

22. J. Slawny, On factor representations and the C*-algebra of the canonical commutation relations,

Comm. Math. Phys. 24 (1972), 151.

23. A. Wightman, The Dirac equation, Aspects of Quantum Theory (Salam and Wigner, eds.),

Cambridge Univ. Press, Cambridge, 1972, pp. 109.

24. _, Relativistic wave equations as singular hyperbolic systems, Proc. Sympos. Pure Math., vol.

23, Amer. Math. Soc., Providence, R. I., 1973.

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540

Current address: Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14214


