On the monodromy at isolated singularities of weighted homogeneous polynomials
HTML articles powered by AMS MathViewer
- by Benjamin G. Cooper
- Trans. Amer. Math. Soc. 269 (1982), 149-166
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637033-X
- PDF | Request permission
Abstract:
Assume $f:{{\mathbf {C}}^m} \to {\mathbf {C}}$ is a weighted homogeneous polynomial with isolated singularity, and define $\phi :{S^{2m - 1}} - {f^{ - 1}}(0) \to {S^1}$ by $\phi (\overrightarrow z ) = f(\overrightarrow z ) / |f(\overrightarrow z )|$. If the monomials of $f$ are algebraically independent, then the closure ${\overline F _0}$ of ${\phi ^{ - 1}}(1)$ in ${S^{2m - 1}}$ admits a deformation into the subset $G$ where each monomial of $f$ has nonnegative real values. For the polynomial $f({z_1}, \ldots ,{z_m}) = z_1^{{a_1}}{z_2} + \cdots + z_{m - 1}^{{a_{m - 1}}}{z_m} + z_m^{{a_m}}{z_1}$, $G$ is a cell complex of dimension $m - 1$, invariant under a characteristic map $h$ of the fibration $\phi$, and the inclusion $G \to {F_0}$ induces isomorphisms in homology. To compute the homology of the link $K = {f^{ - 1}}(0) \cap {S^{2m - 1}}$ it thus suffices to calculate the action of ${h_{\ast }}$ on ${H_{m - 1}}(G)$. Let $d = {a_1}{a_2} \cdots {a_m} + {( - 1)^{m - 1}}$. Let ${w_1}, {w_2}, \ldots ,{w_m}$ be the weights associated with $f$, satisfying ${a_j} / {w_j} + 1 / {w_{j + 1}} = 1$ for $j = 1, 2, \ldots , m - 1$ and ${a_m}/{w_m} + 1/{w_1} = 1$. Let $n = d/{w_1}$, $q = \gcd (n, d)$, $r = q + {( - 1)^m}$. Then ${H_{m - 2}}(K) = {Z^r} \oplus {z_{d/q}}$ and ${H_{m - 1}}(K) = {Z^r}$.References
- V. I. Arnol′d, Normal forms of functions in the neighborhood of degenerate critical points, Uspehi Mat. Nauk 29 (1974), no. 2(176), 11–49 (Russian). Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ (1901–1973), I. MR 0516034
- Lawrence M. Graves, The theory of functions of real variables, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956. 2d ed. MR 0075256
- John Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0239612
- John Milnor and Peter Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385–393. MR 293680, DOI 10.1016/0040-9383(70)90061-3
- Mutsuo Oka, On the homotopy types of hypersurfaces defined by weighted homogeneous polynomials, Topology 12 (1973), 19–32. MR 309950, DOI 10.1016/0040-9383(73)90019-0
- Peter Orlik, On the homology of weighted homogeneous manifolds, Proceedings of the Second Conference on Compact Transformation Groups (Univ. Massachusetts, Amherst, Mass., 1971) Lecture Notes in Math., Vol. 298, Springer, Berlin, 1972, pp. 260–269. MR 0430307
- Peter Orlik, Singularities and group actions, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 5, 703–720. MR 537624, DOI 10.1090/S0273-0979-1979-14643-3
- P. Orlik and R. Randell, The monodromy of weighted homogeneous singularities, Invent. Math. 39 (1977), no. 3, 199–211. MR 460320, DOI 10.1007/BF01402973
- Peter Orlik and Philip Wagreich, Isolated singularities of algebraic surfaces with C$^{\ast }$ action, Ann. of Math. (2) 93 (1971), 205–228. MR 284435, DOI 10.2307/1970772 —, Algebraic surfaces with ${k^{\ast }}$-action, Acta. Math. 138 (1977), 43-81.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 149-166
- MSC: Primary 32C40; Secondary 14B05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637033-X
- MathSciNet review: 637033