Ideal theory in $f$-algebras
HTML articles powered by AMS MathViewer
- by C. B. Huijsmans and B. de Pagter
- Trans. Amer. Math. Soc. 269 (1982), 225-245
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637036-5
- PDF | Request permission
Abstract:
The paper deals mainly with the theory of algebra ideals and order ideals in $f$-algebras. Necessary and sufficient conditions are established for an algebra ideal to be prime, semiprime or idempotent. In a uniformly complete $f$-algebra with unit element every algebra ideal is an order ideal iff the $f$-algebra is normal. This result is based on the fact that the range of every orthomorphism in a uniformly complete normal Riesz space is an order ideal.References
- Ichirô Amemiya, A general spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I. 12 (1953), 111–156. MR 0056853
- Eleanor R. Aron and Anthony W. Hager, Convex vector lattices and $l$-algebras, Topology Appl. 12 (1981), no. 1, 1–10. MR 600458, DOI 10.1016/0166-8641(81)90024-9
- S. J. Bernau, On semi-normal lattice rings, Proc. Cambridge Philos. Soc. 61 (1965), 613–616. MR 183656, DOI 10.1017/s0305004100038949
- Alain Bigard, Les orthomorphismes d’un espace réticulé archimédien, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 236–246 (French). MR 0308000
- Alain Bigard, Klaus Keimel, and Samuel Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Mathematics, Vol. 608, Springer-Verlag, Berlin-New York, 1977 (French). MR 0552653
- Garrett Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41–69. MR 80099
- László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR 0204547
- L. Gillman, Rings with Hausdorff structure space, Fund. Math. 45 (1957), 1–16. MR 92773, DOI 10.4064/fm-45-1-1-16
- Leonard Gillman and Melvin Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366–391. MR 78980, DOI 10.1090/S0002-9947-1956-0078980-4
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, Graduate Texts in Mathematics, No. 43, Springer-Verlag, New York-Heidelberg, 1976. Reprint of the 1960 edition. MR 0407579
- Leonard Gillman and Carl W. Kohls, Convex and pseudoprime ideals in rings of continuous functions, Math. Z. 72 (1959/60), 399–409. MR 114115, DOI 10.1007/BF01162963
- Melvin Henriksen, Semiprime ideals of $f$-rings, Symposia Mathematica, Vol. XXI (Convegno sulle Misure su Gruppi e su Spazi Vettoriali, Convegno sui Gruppi e Anelli Ordinati, INDAM, Rome, 1975), Academic Press, London, 1977, pp. 401–409. MR 0480256
- M. Henriksen, J. R. Isbell, and D. G. Johnson, Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961/62), 107–117. MR 133350, DOI 10.4064/fm-50-2-107-117
- M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961/62), 73–94. MR 133698, DOI 10.4064/fm-50-1-73-94
- C. B. Huijsmans, Some analogies between commutative rings, Riesz spaces and distributive lattices with smallest element, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 132–147. MR 0354635
- C. B. Huijsmans and B. de Pagter, On $z$-ideals and $d$-ideals in Riesz spaces. II, Nederl. Akad. Wetensch. Indag. Math. 42 (1980), no. 4, 391–408. MR 597997
- D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163–215. MR 125141, DOI 10.1007/BF02546389
- E. de Jonge and A. C. M. van Rooij, Introduction to Riesz spaces, Mathematical Centre Tracts, No. 78, Mathematisch Centrum, Amsterdam, 1977. MR 0473777
- W. A. J. Luxemburg, Some aspects of the theory of Riesz spaces, University of Arkansas Lecture Notes in Mathematics, vol. 4, University of Arkansas, Fayetteville, Ark., 1979. MR 568706 W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces. I, North-Holland, Amsterdam and London, 1971.
- Hidegorô Nakano, Modern Spectral Theory, Maruzen Co. Ltd., Tokyo, 1950. MR 0038564
- David Rudd, On two sum theorems for ideals of $C(X)$, Michigan Math. J. 17 (1970), 139–141. MR 259616
- G. L. Seever, Measures on $F$-spaces, Trans. Amer. Math. Soc. 133 (1968), 267–280. MR 226386, DOI 10.1090/S0002-9947-1968-0226386-5
- H. Subramanian, $l$-prime ideals in $f$-rings, Bull. Soc. Math. France 95 (1967), 193–203. MR 223284
- R. Douglas Williams, Intersections of primary ideals in rings of continuous functions, Canadian J. Math. 24 (1972), 502–519. MR 295066, DOI 10.4153/CJM-1972-043-8
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 225-245
- MSC: Primary 06F25; Secondary 46A40, 46J20, 54C40
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637036-5
- MathSciNet review: 637036