An improvement of the Poincaré-Birkhoff fixed point theorem
HTML articles powered by AMS MathViewer
- by Patricia H. Carter PDF
- Trans. Amer. Math. Soc. 269 (1982), 285-299 Request permission
Abstract:
If $g$ is a twist homeomorphism of an annulus $A$ in the plane which leaves at most one point in the interior of $A$ fixed, then there is an essential simple closed curve in the interior of $A$ which meets its image in at most one point; hence the annular region bounded by this simple closed curve and the inside component of the boundary of $A$ is mapped onto either a proper subset or a proper superset of itself.References
- Harold Abelson and Charles Stanton, Poincaré’s geometric theorem for flows, J. Differential Geometry 11 (1976), no. 1, 129–131. MR 415685
- Richard B. Barrar, Proof of the fixed point theorems of Poincaré and Birkhoff, Canadian J. Math. 19 (1967), 333–343. MR 210106, DOI 10.4153/CJM-1967-024-5 G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22. —, An extension of Poincaré’s last geometric theorem, Acta Math. 47 (1925), 297-311. —, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1927.
- M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21–31. MR 448339 P. Carter, An improvement of the Poincaré-Birkhoff Fixed Point Theorem, Dissertation, University of Florida, 1978.
- C. B. García, A fixed point theorem including the last theorem of Poincaré, Math. Programming 9 (1975), no. 2, 227–239. MR 418069, DOI 10.1007/BF01681345
- Robert Hermann, Some differential-geometric aspects of the Lagrange variational problem, Illinois J. Math. 6 (1962), 634–673. MR 145457 H. Jacobowitz, Periodic solution of $x'' + f(x,\,t) = 0$ via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976), 37-52.
- Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correction to “Periodic solutions of $x''+f(x, t)=0$ via the Poincaré-Birkhoff theorem” (J. Differential Equations 20 (1976), no. 1, 37–52), J. Differential Equations 25 (1977), no. 1, 148–149. MR 437857, DOI 10.1016/0022-0396(77)90187-5 B. de Kerékjarto, The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. (Szeged) 4 (1928-1929), 86-102.
- R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
- Walter D. Neumann, Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. Austral. Math. Soc. 17 (1977), no. 3, 375–389. MR 584597, DOI 10.1017/S0004972700010650
- M. H. A. Newman, Fixed point and coincidence theorems, J. London Math. Soc. 27 (1952), 135–140. MR 46637, DOI 10.1112/jlms/s1-27.2.135 H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
- Carl P. Simon and Charles J. Titus, The fixed point index of symplectic maps, Géométrie symplectique et physique mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974) Éditions Centre Nat. Recherche Sci., Paris, 1975, pp. 19–28 (English, with French summary). With a question by W. Klingenberg and an answer by Simon. MR 0461565
- T. van der Walt, Fixed and almost fixed points, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR 0205246
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 285-299
- MSC: Primary 54H25; Secondary 55M25, 58F99
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637039-0
- MathSciNet review: 637039