Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

An improvement of the Poincaré-Birkhoff fixed point theorem
HTML articles powered by AMS MathViewer

by Patricia H. Carter PDF
Trans. Amer. Math. Soc. 269 (1982), 285-299 Request permission

Abstract:

If $g$ is a twist homeomorphism of an annulus $A$ in the plane which leaves at most one point in the interior of $A$ fixed, then there is an essential simple closed curve in the interior of $A$ which meets its image in at most one point; hence the annular region bounded by this simple closed curve and the inside component of the boundary of $A$ is mapped onto either a proper subset or a proper superset of itself.
References
  • Harold Abelson and Charles Stanton, Poincaré’s geometric theorem for flows, J. Differential Geometry 11 (1976), no. 1, 129–131. MR 415685
  • Richard B. Barrar, Proof of the fixed point theorems of Poincaré and Birkhoff, Canadian J. Math. 19 (1967), 333–343. MR 210106, DOI 10.4153/CJM-1967-024-5
  • G. D. Birkhoff, Proof of Poincaré’s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22. —, An extension of Poincaré’s last geometric theorem, Acta Math. 47 (1925), 297-311. —, Dynamical systems, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1927.
  • M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), no. 1, 21–31. MR 448339
  • P. Carter, An improvement of the Poincaré-Birkhoff Fixed Point Theorem, Dissertation, University of Florida, 1978.
  • C. B. García, A fixed point theorem including the last theorem of Poincaré, Math. Programming 9 (1975), no. 2, 227–239. MR 418069, DOI 10.1007/BF01681345
  • Robert Hermann, Some differential-geometric aspects of the Lagrange variational problem, Illinois J. Math. 6 (1962), 634–673. MR 145457
  • H. Jacobowitz, Periodic solution of $x'' + f(x,\,t) = 0$ via the Poincaré-Birkhoff theorem, J. Differential Equations 20 (1976), 37-52.
  • Howard Jacobowitz, Corrigendum: The existence of the second fixed point: a correction to “Periodic solutions of $x''+f(x, t)=0$ via the Poincaré-Birkhoff theorem” (J. Differential Equations 20 (1976), no. 1, 37–52), J. Differential Equations 25 (1977), no. 1, 148–149. MR 437857, DOI 10.1016/0022-0396(77)90187-5
  • B. de Kerékjarto, The plane translation theorem of Brouwer and the last geometric theorem of Poincaré, Acta Sci. Math. (Szeged) 4 (1928-1929), 86-102.
  • R. L. Moore, Foundations of point set theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR 0150722
  • Walter D. Neumann, Generalizations of the Poincaré Birkhoff fixed point theorem, Bull. Austral. Math. Soc. 17 (1977), no. 3, 375–389. MR 584597, DOI 10.1017/S0004972700010650
  • M. H. A. Newman, Fixed point and coincidence theorems, J. London Math. Soc. 27 (1952), 135–140. MR 46637, DOI 10.1112/jlms/s1-27.2.135
  • H. Poincaré, Sur un théorème de géométrie, Rend. Circ. Mat. Palermo 33 (1912), 375-407.
  • Carl P. Simon and Charles J. Titus, The fixed point index of symplectic maps, Géométrie symplectique et physique mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974) Éditions Centre Nat. Recherche Sci., Paris, 1975, pp. 19–28 (English, with French summary). With a question by W. Klingenberg and an answer by Simon. MR 0461565
  • T. van der Walt, Fixed and almost fixed points, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR 0205246
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 54H25, 55M25, 58F99
  • Retrieve articles in all journals with MSC: 54H25, 55M25, 58F99
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 269 (1982), 285-299
  • MSC: Primary 54H25; Secondary 55M25, 58F99
  • DOI: https://doi.org/10.1090/S0002-9947-1982-0637039-0
  • MathSciNet review: 637039