## An improvement of the Poincaré-Birkhoff fixed point theorem

HTML articles powered by AMS MathViewer

- by Patricia H. Carter PDF
- Trans. Amer. Math. Soc.
**269**(1982), 285-299 Request permission

## Abstract:

If $g$ is a twist homeomorphism of an annulus $A$ in the plane which leaves at most one point in the interior of $A$ fixed, then there is an essential simple closed curve in the interior of $A$ which meets its image in at most one point; hence the annular region bounded by this simple closed curve and the inside component of the boundary of $A$ is mapped onto either a proper subset or a proper superset of itself.## References

- Harold Abelson and Charles Stanton,
*Poincaré’s geometric theorem for flows*, J. Differential Geometry**11**(1976), no. 1, 129–131. MR**415685** - Richard B. Barrar,
*Proof of the fixed point theorems of Poincaré and Birkhoff*, Canadian J. Math.**19**(1967), 333–343. MR**210106**, DOI 10.4153/CJM-1967-024-5
G. D. Birkhoff, - M. Brown and W. D. Neumann,
*Proof of the Poincaré-Birkhoff fixed point theorem*, Michigan Math. J.**24**(1977), no. 1, 21–31. MR**448339**
P. Carter, - C. B. García,
*A fixed point theorem including the last theorem of Poincaré*, Math. Programming**9**(1975), no. 2, 227–239. MR**418069**, DOI 10.1007/BF01681345 - Robert Hermann,
*Some differential-geometric aspects of the Lagrange variational problem*, Illinois J. Math.**6**(1962), 634–673. MR**145457**
H. Jacobowitz, - Howard Jacobowitz,
*Corrigendum: The existence of the second fixed point: a correction to “Periodic solutions of $x''+f(x, t)=0$ via the Poincaré-Birkhoff theorem” (J. Differential Equations 20 (1976), no. 1, 37–52)*, J. Differential Equations**25**(1977), no. 1, 148–149. MR**437857**, DOI 10.1016/0022-0396(77)90187-5
B. de Kerékjarto, - R. L. Moore,
*Foundations of point set theory*, Revised edition, American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722** - Walter D. Neumann,
*Generalizations of the Poincaré Birkhoff fixed point theorem*, Bull. Austral. Math. Soc.**17**(1977), no. 3, 375–389. MR**584597**, DOI 10.1017/S0004972700010650 - M. H. A. Newman,
*Fixed point and coincidence theorems*, J. London Math. Soc.**27**(1952), 135–140. MR**46637**, DOI 10.1112/jlms/s1-27.2.135
H. Poincaré, - Carl P. Simon and Charles J. Titus,
*The fixed point index of symplectic maps*, Géométrie symplectique et physique mathématique (Colloq. Internat. C.N.R.S., Aix-en-Provence, 1974) Éditions Centre Nat. Recherche Sci., Paris, 1975, pp. 19–28 (English, with French summary). With a question by W. Klingenberg and an answer by Simon. MR**0461565** - T. van der Walt,
*Fixed and almost fixed points*, Mathematical Centre Tracts, vol. 1, Mathematisch Centrum, Amsterdam, 1963. MR**0205246**

*Proof of Poincaré’s geometric theorem*, Trans. Amer. Math. Soc.

**14**(1913), 14-22. —,

*An extension of Poincaré’s last geometric theorem*, Acta Math.

**47**(1925), 297-311. —,

*Dynamical systems*, Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1927.

*An improvement of the Poincaré-Birkhoff Fixed Point Theorem*, Dissertation, University of Florida, 1978.

*Periodic solution of*$x'' + f(x,\,t) = 0$

*via the Poincaré-Birkhoff theorem*, J. Differential Equations

**20**(1976), 37-52.

*The plane translation theorem of Brouwer and the last geometric theorem of Poincaré*, Acta Sci. Math. (Szeged)

**4**(1928-1929), 86-102.

*Sur un théorème de géométrie*, Rend. Circ. Mat. Palermo

**33**(1912), 375-407.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**269**(1982), 285-299 - MSC: Primary 54H25; Secondary 55M25, 58F99
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637039-0
- MathSciNet review: 637039