## Finite sublattices of a free lattice

HTML articles powered by AMS MathViewer

- by J. B. Nation PDF
- Trans. Amer. Math. Soc.
**269**(1982), 311-337 Request permission

## Abstract:

Every finite semidistributive lattice satisfying Whitman’s condition is isomorphic to a sublattice of a free lattice.## References

- Rachad Antonius and Ivan Rival,
*A note on Whitman’s property for free lattices*, Algebra Universalis**4**(1974), 271–272. MR**357251**, DOI 10.1007/BF02485736 - B. A. Davey, W. Poguntke, and I. Rival,
*A characterization of semi-distributivity*, Algebra Universalis**5**(1975), 72–75. MR**382103**, DOI 10.1007/BF02485233 - Brian A. Davey and Bill Sands,
*An application of Whitman’s condition to lattices with no infinite chains*, Algebra Universalis**7**(1977), no. 2, 171–178. MR**434896**, DOI 10.1007/BF02485426 - Alan Day,
*Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices*, Canadian J. Math.**31**(1979), no. 1, 69–78. MR**518707**, DOI 10.4153/CJM-1979-008-x - Alan Day and J. B. Nation,
*A note on finite sublattices of free lattices*, Algebra Universalis**15**(1982), no. 1, 90–94. MR**663955**, DOI 10.1007/BF02483711 - Ralph Freese and J. B. Nation,
*Projective lattices*, Pacific J. Math.**75**(1978), no. 1, 93–106. MR**500031** - Fred Galvin and Bjarni Jónsson,
*Distributive sublattices of a free lattice*, Canadian J. Math.**13**(1961), 265–272. MR**122738**, DOI 10.4153/CJM-1961-022-8 - H. Gaskill, G. Grätzer, and C. R. Platt,
*Sharply transferable lattices*, Canadian J. Math.**27**(1975), no. 6, 1246–1262. MR**406879**, DOI 10.4153/CJM-1975-130-5 - H. S. Gaskill and C. R. Platt,
*Sharp transferability and finite sublattices of free lattices*, Canadian J. Math.**27**(1975), no. 5, 1036–1041. MR**389687**, DOI 10.4153/CJM-1975-109-7 - G. Grätzer and C. R. Platt,
*A characterization of sharply transferable lattices*, Canadian J. Math.**32**(1980), no. 1, 145–154. MR**559791**, DOI 10.4153/CJM-1980-011-8 - Jaroslav Ježek and Václav Slavík,
*Primitive lattices*, Czechoslovak Math. J.**29(104)**(1979), no. 4, 595–634 (English, with Russian summary). MR**548223** - Bjarni Jónsson,
*Sublattices of a free lattice*, Canadian J. Math.**13**(1961), 256–264. MR**123493**, DOI 10.4153/CJM-1961-021-0 - B. Jónsson,
*Relatively free lattices*, Colloq. Math.**21**(1970), 191–196. MR**263711**, DOI 10.4064/cm-21-2-191-196 - Bjarni Jónsson and James E. Kiefer,
*Finite sublattices of a free lattice*, Canadian J. Math.**14**(1962), 487–497. MR**137667**, DOI 10.4153/CJM-1962-040-1 - B. Jónsson and J. B. Nation,
*A report on sublattices of a free lattice*, Contributions to universal algebra (Colloq., József Attila Univ., Szeged, 1975) Colloq. Math. Soc. János Bolyai, Vol. 17, North-Holland, Amsterdam, 1977, pp. 223–257. MR**0472614** - Alan Kostinsky,
*Projective lattices and bounded homomorphisms*, Pacific J. Math.**40**(1972), 111–119. MR**302519** - Harry Lakser,
*Finite projective lattices are sharply transferable*, Algebra Universalis**5**(1975), no. 3, 407–409. MR**398918**, DOI 10.1007/BF02485275 - Ralph McKenzie,
*Equational bases and nonmodular lattice varieties*, Trans. Amer. Math. Soc.**174**(1972), 1–43. MR**313141**, DOI 10.1090/S0002-9947-1972-0313141-1 - J. B. Nation,
*Bounded finite lattices*, Universal algebra (Esztergom, 1977) Colloq. Math. Soc. János Bolyai, vol. 29, North-Holland, Amsterdam-New York, 1982, pp. 531–533. MR**660892** - C. R. Platt,
*Finite transferable lattices are sharply transferable*, Proc. Amer. Math. Soc.**81**(1981), no. 3, 355–358. MR**597639**, DOI 10.1090/S0002-9939-1981-0597639-8 - Ivan Rival and Bill Sands,
*Planar sublattices of a free lattice. I*, Canadian J. Math.**30**(1978), no. 6, 1256–1283. MR**511561**, DOI 10.4153/CJM-1978-104-2 - Howard L. Rolf,
*The free lattice generated by a set of chains*, Pacific J. Math.**8**(1958), 585–595. MR**103843** - Philip M. Whitman,
*Free lattices*, Ann. of Math. (2)**42**(1941), 325–330. MR**3614**, DOI 10.2307/1969001 - Philip M. Whitman,
*Free lattices. II*, Ann. of Math. (2)**43**(1942), 104–115. MR**6143**, DOI 10.2307/1968883

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**269**(1982), 311-337 - MSC: Primary 06B25; Secondary 08B20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637041-9
- MathSciNet review: 637041