Structure of complex linear differential equations
HTML articles powered by AMS MathViewer
- by Margalit Ronen
- Trans. Amer. Math. Soc. 269 (1982), 429-444
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637700-8
- PDF | Request permission
Abstract:
In this paper homogeneous linear differential equations in the complex domain are considered. Relations between (a) properties of the zeros of solutions, (b) factorization of the equation into linear factors, and (c) nonvanishing of corresponding Wronskians are proved.References
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- W. J. Kim, The Schwarzian derivative and multivalence, Pacific J. Math. 31 (1969), 717–724. MR 252630
- Meira Lavie, The Schwarzian derivative and disconjugacy of $n$th order linear differential equations, Canadian J. Math. 21 (1969), 235–249. MR 237874, DOI 10.4153/CJM-1969-023-9
- Meira Lavie, Disconjugacy of linear differential equations in the complex domain, Pacific J. Math. 32 (1970), 435–457. MR 257447
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- A. C. Peterson, On the sign of the Green’s function beyond the interval of disconjugacy, Rocky Mountain J. Math. 3 (1973), 41–51. MR 326069, DOI 10.1216/RMJ-1973-3-1-41
- G. Pólya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no. 4, 312–324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 429-444
- MSC: Primary 34C10; Secondary 30C55, 34A20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637700-8
- MathSciNet review: 637700