On the fullness of surjective maps of an interval
HTML articles powered by AMS MathViewer
- by Harold Proppe and Abraham Boyarsky
- Trans. Amer. Math. Soc. 269 (1982), 445-452
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637701-X
- PDF | Request permission
Abstract:
Let $I = [0, 1]$, $\mathcal {B}$ = Lebesgue measurable subsets of $[0, 1]$, and let $\lambda$ denote the Lebesgue measure on $(I, \mathcal {B})$. Let $\tau :I \to I$ be measurable and surjective. We say $\tau$ is full, if for all $A \in \mathcal {B}$, $\lambda (A) > 0$, $\tau (A), {\tau ^2}(A), \ldots$, measurable, the condition (1) \[ \lim \limits _{n \to \infty } \lambda ({\tau ^n}(A)) = 1\] holds. We say $\tau$ is interval full if (1) holds for any interval $A \subset I$. In this note, we give an example of $\tau :I \to I$ which is continuous and interval full, but not full. We also show that for a class of transformations $\tau$ satisfying Renyi’s condition, interval fullness implies fullness. Finally, we show that fullness is not preserved under limits on the surjections.References
- V. A. Rohlin, Exact endomorphism of a Lebesgue space, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14 (1964), 443–474 (Hungarian). MR 0228654
- J. H. B. Kemperman, The ergodic behavior of a class of real transformations, Stochastic processes and related topics (Proc. Summer Res. Inst. Statist. Inference for Stochastic Processes, Indiana Univ., Bloomington, Ind., 1974, Vol. 1; dedicated to Jerzy Neyman), Academic Press, New York, 1975, pp. 249–258. MR 0372156
- Nathan Friedman and Abraham Boyarsky, Matrices and eigenfunctions induced by Markov maps, Linear Algebra Appl. 38 (1981), 141–147. MR 636032, DOI 10.1016/0024-3795(81)90015-X
- Matthew Halfant, Analytic properties of Rényi’s invariant density, Israel J. Math. 27 (1977), no. 1, 1–20. MR 437718, DOI 10.1007/BF02761603
- A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 2, 592–603 (English, with Italian summary). MR 0480951
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 445-452
- MSC: Primary 26A18; Secondary 28D99, 58F20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637701-X
- MathSciNet review: 637701