Ramsey numbers for the pair sparse graph-path or cycle
HTML articles powered by AMS MathViewer
- by S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau and R. H. Schelp
- Trans. Amer. Math. Soc. 269 (1982), 501-512
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637704-5
- PDF | Request permission
Abstract:
Let $G$ be a connected graph on $n$ vertices with no more than $n(1 + \varepsilon )$ edges, and ${P_k}$ or ${C_k}$ a path or cycle with $k$ vertices. In this paper we will show that if $n$ is sufficiently large and $\varepsilon$ is sufficiently small then for $k$ odd \[ r(G, {C_k}) = 2n - 1.\] Also, for $k \geqslant 2$, \[ r(G, {P_k}) = \max \{ n + [k/2] - 1, n + k - 2 - \alpha \prime - \delta \} ,\] where $\alpha \prime$ is the independence number of an appropriate subgraph of $G$ and $\delta$ is $0$ or $1$ depending upon $n$, $k$ and $\alpha \prime$.References
- J. A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, J. Combinatorial Theory Ser. B 14 (1973), 46–54. MR 317991, DOI 10.1016/s0095-8956(73)80005-x
- Stefan A. Burr, Generalized Ramsey theory for graphs—a survey, Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973) Lecture Notes in Math., Vol. 406, Springer, Berlin, 1974, pp. 52–75. MR 0379210 —, Ramsey numbers involving graphs with long suspended paths, J. London Math. Soc. (to appear).
- S. A. Burr, P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp, An extremal problem in generalized Ramsey theory, Ars Combin. 10 (1980), 193–203. MR 598912
- V. Chvátal, Tree-complete graph Ramsey numbers, J. Graph Theory 1 (1977), no. 1, 93. MR 465920, DOI 10.1002/jgt.3190010118
- R. J. Faudree, S. L. Lawrence, T. D. Parsons, and R. H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974), 269–277. MR 357195, DOI 10.1016/0012-365X(74)90122-8
- L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967), 167–170. MR 239997 P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London 1969. MR 0256911
- T. D. Parsons, Path-star Ramsey numbers, J. Combinatorial Theory Ser. B 17 (1974), 51–58. MR 382069, DOI 10.1016/0095-8956(74)90048-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 269 (1982), 501-512
- MSC: Primary 05C55
- DOI: https://doi.org/10.1090/S0002-9947-1982-0637704-5
- MathSciNet review: 637704