Calibers of compact spaces
HTML articles powered by AMS MathViewer
- by S. Argyros and A. Tsarpalias PDF
- Trans. Amer. Math. Soc. 270 (1982), 149-162 Request permission
Abstract:
Let $X$ be a compact Hausdorff space and $\kappa$ its Souslin number.$^{2}$ We prove that if $\alpha$ is a cardinal such that either $\alpha$ and $\operatorname {cf} (\alpha )$ are greater than $\kappa$ and strongly $\kappa$-inaccessible or else $\alpha$ is regular and greater than $\kappa$, then $X$ has $(\alpha , \sqrt [\underparen {\kappa }]{\alpha })$ caliber. Restricting our interest to the category of compact spaces $X$ with $S(X) = {\omega ^ + }$ (i.e. $X$ satisfy the countable chain condition), the above statement takes, under G.C.H., the following form. For any compact space $X$ with $S(X) = {\omega ^ + }$, we have that (a) if $\alpha$ is a cardinal and $\operatorname {cf} (\alpha )$ does not have the form ${\beta ^ + }$ with $\operatorname {cf} (\beta ) = \omega$, then $\alpha$ is caliber for the space $X$. (b) If $\varepsilon = {\beta ^ + }$ and $\operatorname {cf} (\beta ) = \omega$ then $(\alpha , \beta )$ is caliber for $X$. A related example shows that the result of (b) is in a sense the best possible.References
- S. Argyros, Boolean algebras without free families, Algebra Universalis 14 (1982), no.Β 2, 244β256. MR 635003, DOI 10.1007/BF02483925
- S. Broverman, J. Ginsburg, K. Kunen, and F. D. Tall, Topologies determined by $\sigma$-ideals on $\omega _{1}$, Canadian J. Math. 30 (1978), no.Β 6, 1306β1312. MR 511564, DOI 10.4153/CJM-1978-107-7
- W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), no.Β 2, 163β199. MR 290326 J. Gerlits, manuscript notes, 1978.
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205β248. MR 257721, DOI 10.1007/BF02394572
- N. A. Ε anin, On the product of topological spaces, Trudy Mat. Inst. Steklov. 24 (1948), 112 (Russian). MR 0027310
- Saharon Shelah, Remarks on cardinal invariants in topology, General Topology and Appl. 7 (1977), no.Β 3, 251β259. MR 482614
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 149-162
- MSC: Primary 54A25; Secondary 06E10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642334-5
- MathSciNet review: 642334