A note on complete intersections
HTML articles powered by AMS MathViewer
- by S. M. Bhatwadekar
- Trans. Amer. Math. Soc. 270 (1982), 175-181
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642336-9
- PDF | Request permission
Abstract:
Let $R$ be a regular local ring and let $R[T]$ be a polynomial algebra in one variable over $R$. In this paper the author proves that every maximal ideal of $R[T]$ is complete intersection in each of the following cases: (1) $R$ is a local ring of an affine algebra over an infinite perfect field, (2) $R$ is a power series ring over a field.References
- Birger Iversen, Generic local structure of the morphisms in commutative algebra, Lecture Notes in Mathematics, Vol. 310, Springer-Verlag, Berlin-New York, 1973. MR 0360575
- E. D. Davis and A. V. Geramita, Efficient generation of maximal ideals in polynomial rings, Trans. Amer. Math. Soc. 231 (1977), no. 2, 497–505. MR 472800, DOI 10.1090/S0002-9947-1977-0472800-5 H. Lindel, On a question of Bass, Quillen and Suslin concerning projective modules over polynomial rings, preprint.
- Hartmut Lindel and Werner Lütkebohmert, Projektive Moduln über polynomialen Erweiterungen von Potenzreihenalgebren, Arch. Math. (Basel) 28 (1977), no. 1, 51–54. MR 435078, DOI 10.1007/BF01223888
- N. Mohan Kumar, On two conjectures about polynomial rings, Invent. Math. 46 (1978), no. 3, 225–236. MR 499785, DOI 10.1007/BF01390276
- M. Pavaman Murthy, Projective $A[X]$-modules, J. London Math. Soc. 41 (1966), 453–456. MR 200289, DOI 10.1112/jlms/s1-41.1.453 J.-P. Serre, Sur les modules projectifs, Sem. Dubriel-Pisot, no. 2 (1960-61), Secrétariat Math., Paris, 1963. MR 28 #3911.
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 175-181
- MSC: Primary 13B25; Secondary 13F20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642336-9
- MathSciNet review: 642336