Degeneracy theorems for holomorphic mappings between algebraic varieties
Author:
Robert Molzon
Journal:
Trans. Amer. Math. Soc. 270 (1982), 183-192
MSC:
Primary 32H30
DOI:
https://doi.org/10.1090/S0002-9947-1982-0642337-0
MathSciNet review:
642337
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Degeneracy theorems are proved for holomorphic mappings from affine algebraic manifolds to projective algebraic manifolds of equal dimensions. A mapping is degenerate if it satisfies a growth estimate and omits a set of -plane sections of positive capacity; the capacity being defined in terms of a singular integral. The capacity is a more delicate method of measuring the size of a set of
-plane sections than Hausdorff measure and arises naturally by considering the singular integrals in the First Main Theorem of Nevanlinna.
- [1] Raoul Bott and S. S. Chern, Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections, Acta Math. 114 (1965), 71–112. MR 0185607, https://doi.org/10.1007/BF02391818
- [2] Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- [3] James A. Carlson and Phillip A. Griffiths, The order functions for entire holomorphic mappings, Value distribution theory, Part A (Proc. Tulane Univ. Program, 1972–1973), Dekker, New York, 1974, pp. 225–248. MR 0404699
- [4] James A. Carlson, A moving lemma for the transcendental Bezout problem, Ann. of Math. (2) 103 (1976), no. 2, 305–330. MR 0409901, https://doi.org/10.2307/1971008
- [5] Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75. MR 0367302, https://doi.org/10.2307/2373660
- [6] Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145–220. MR 0427690, https://doi.org/10.1007/BF02392265
- [7] John J. Hirschfelder, The first main theorem of value distribution in several variables, Invent. Math. 8 (1969), 1–33. MR 0245840, https://doi.org/10.1007/BF01418868
- [8] Robert E. Molzon, Sets omitted by equidimensional holomorphic mappings, Amer. J. Math. 101 (1979), no. 6, 1271–1283. MR 548881, https://doi.org/10.2307/2374140
- [9] Wilhelm Stoll, Invariant forms on Grassmann manifolds, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. Annals of Mathematics Studies, No. 89. MR 0481089
- [10] H. Wu, Remarks on the first main theorem in equidistribution theory. III, J. Differential Geometry 3 (1969), 83–94. MR 0276502
- [11] H. Wu, Mappings of Riemann surfaces (Nevanlinna theory), Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 480–532. MR 0237772
Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H30
Retrieve articles in all journals with MSC: 32H30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1982-0642337-0
Article copyright:
© Copyright 1982
American Mathematical Society