## On nonseparable Banach spaces

HTML articles powered by AMS MathViewer

- by Spiros A. Argyros PDF
- Trans. Amer. Math. Soc.
**270**(1982), 193-216 Request permission

## Abstract:

Combining combinatorial methods from set theory with the functional structure of certain Banach spaces we get some results on the isomorphic structure of nonseparable Banach spaces. The conclusions of the paper, in conjunction with already known results, give complete answers to problems of the theory of Banach spaces. An interesting point here is that some questions of Banach spaces theory are independent of Z.F.C. So, for example, the answer to a conjecture of Peลczynski that states that the isomorphic embeddability of ${L^1}{\{ - 1, 1\} ^\alpha }$ into ${X^{\ast }}$ implies, for any infinite cardinal $\alpha$, the isomorphic embedding of $l_\alpha ^1$ into $X$, gets the following form: if $\alpha = \omega$, has been proved from Peลczynski; if $\alpha > {\omega ^ + }$, the proof is given in this paper; if $\alpha = {\omega ^ + }$, in ${\text {Z}}{\text {.F}}{\text {.C}}{\text {.}} + {\text {C}}{\text {.H}}{\text {.}}$, an example discovered by Haydon gives a negative answer; if $\alpha = {\omega ^ + }$, in ${\text {Z}}{\text {.F}}{\text {.C}}{\text {.}} + \urcorner {\text {C}}{\text {.H}}{\text {.}} + {\text {M}}{\text {.A}}{\text {.}}$, is also proved in this paper.## References

- S. Argyros,
*On the dimension of injective Banach spaces*, Proc. Amer. Math. Soc.**78**(1980), no.ย 2, 267โ268. MR**550510**, DOI 10.1090/S0002-9939-1980-0550510-9 - S. Argyros,
*Weak compactness in $L^{1}(\lambda )$ and injective Banach spaces*, Israel J. Math.**37**(1980), no.ย 1-2, 21โ33. MR**599299**, DOI 10.1007/BF02762865
S. Argyros and S. Negrepontis, - W. W. Comfort and S. Negrepontis,
*The theory of ultrafilters*, Die Grundlehren der mathematischen Wissenschaften, Band 211, Springer-Verlag, New York-Heidelberg, 1974. MR**0396267** - Leonard E. Dor,
*On projections in $L_{1}$*, Ann. of Math. (2)**102**(1975), no.ย 3, 463โ474. MR**420244**, DOI 10.2307/1971039 - James Hagler,
*On the structure of $S$ and $C(S)$ for $S$ dyadic*, Trans. Amer. Math. Soc.**214**(1975), 415โ428. MR**388062**, DOI 10.1090/S0002-9947-1975-0388062-1 - James Hagler and Charles Stegall,
*Banach spaces whose duals contain complemented subspaces isomorphic to $C[0,1]$*, J. Functional Analysis**13**(1973), 233โ251. MR**0350381**, DOI 10.1016/0022-1236(73)90033-5 - A. Hajnal,
*Proof of a conjecture of S. Ruziewicz*, Fund. Math.**50**(1961/62), 123โ128. MR**131986**, DOI 10.4064/fm-50-2-123-128 - Richard Haydon,
*On Banach spaces which contain $l^{1}(\tau )$ and types of measures on compact spaces*, Israel J. Math.**28**(1977), no.ย 4, 313โ324. MR**511799**, DOI 10.1007/BF02760637
โ, - W. B. Johnson, H. P. Rosenthal, and M. Zippin,
*On bases, finite dimensional decompositions and weaker structures in Banach spaces*, Israel J. Math.**9**(1971), 488โ506. MR**280983**, DOI 10.1007/BF02771464 - A. Peลczyลski,
*Projections in certain Banach spaces*, Studia Math.**19**(1960), 209โ228. MR**126145**, DOI 10.4064/sm-19-2-209-228
โ, - Haskell P. Rosenthal,
*On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$*, Acta Math.**124**(1970), 205โ248. MR**257721**, DOI 10.1007/BF02394572 - Haskell P. Rosenthal,
*On relatively disjoint families of measures, with some applications to Banach space theory*, Studia Math.**37**(1970), 13โ36. MR**270122**, DOI 10.4064/sm-37-1-13-36 *Handbook of mathematical logic*, Studies in Logic and the Foundations of Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977. With the cooperation of H. J. Keisler, K. Kunen, Y. N. Moschovakis and A. S. Troelstra. MR**457132**
T. W. Starbird, - C. Stegall,
*Banach spaces whose duals contain $l_{1}(\Gamma )$ with applications to the study of dual $L_{1}(\mu )$ spaces*, Trans. Amer. Math. Soc.**176**(1973), 463โ477. MR**315404**, DOI 10.1090/S0002-9947-1973-0315404-3

*Universal embeddings of*$l_\alpha ^1$

*into*$C(X)$

*and*${L^\infty }(\mu )$, Colloq. Math. Soc. Janรณs Bolyai Topology, vol. 23, Budapest, 1978.

*On dual*${L^1}$

*spaces and injective bidual Banach spaces*, Israel J. Math.

**7**(1978), 142-152.

*On Banach spaces containing*${L^1}(\mu )$, Studia Math.

**30**(1968), 231-246.

*Subspaces of*${L^1}$

*containing*${L^1}$, Dissertation, Univ. of California, Berkeley, 1976.

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**270**(1982), 193-216 - MSC: Primary 46B20; Secondary 03E35, 03E50
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642338-2
- MathSciNet review: 642338