Structure theory for a class of grade four Gorenstein ideals
HTML articles powered by AMS MathViewer
- by Andrew Kustin and Matthew Miller
- Trans. Amer. Math. Soc. 270 (1982), 287-307
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642342-4
- PDF | Request permission
Abstract:
An ideal $I$ in a commutative noetherian ring $R$ is a Gorenstein ideal of $\operatorname {grade} g$ if ${\operatorname {pd} _R}(R / I) = \operatorname {grade} I = g$ and the canonical module $\operatorname {Ext} _R^g(R / I, R)$ is cyclic. Serre showed that if $g = 2$ then $I$ is a complete intersection, and Buchsbaum and Eisenbud proved a structure theorem for the case $g = 3$. We present generic resolutions for a class of Gorenstein ideals of $\operatorname {grade} 4$, and we illustrate the structure of the resolution with various specializations. Among these examples there are Gorenstein ideals of $\operatorname {grade} 4$ in $k[[x, y, z, v]]$ that are $n$-generated for any odd integer $n \geqslant 7$. We construct other examples from almost complete intersections of $\operatorname {grade} 3$ and their canonical modules. In the generic case the ideals are shown to be normal primes. Finally, we conclude by giving an explicit associative algebra structure for the resolutions. It is this algebra structure that we use to classify the different Gorenstein ideals of $\operatorname {grade} 4$, and which may be the key to a complete structure theorem.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28. MR 153708, DOI 10.1007/BF01112819
- Henrik Bresinsky, Monomial Gorenstein ideals, Manuscripta Math. 29 (1979), no. 2-4, 159–181. MR 545039, DOI 10.1007/BF01303625
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR 314819, DOI 10.1016/0021-8693(73)90044-6
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Tor Holtedahl Gulliksen and Odd Guttorm Negȧrd, Un complexe résolvant pour certains idéaux déterminantiels, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A16–A18 (French). MR 296063
- Jürgen Herzog, Certain complexes associated to a sequence and a matrix, Manuscripta Math. 12 (1974), 217–248. MR 357414, DOI 10.1007/BF01155515 —, Komplexe, Auflösungen und Dualität in der lokalen Algebra, Habilitationsschrift Regensburg, 1973.
- Jürgen Herzog and Ernst Kunz (eds.), Der kanonische Modul eines Cohen-Macaulay-Rings, Lecture Notes in Mathematics, Vol. 238, Springer-Verlag, Berlin-New York, 1971. Seminar über die lokale Kohomologietheorie von Grothendieck, Universität Regensburg, Wintersemester 1970/1971. MR 0412177
- J. Herzog and E. Kunz, On the deviation and the type of a Cohen-Macaulay ring, Manuscripta Math. 9 (1973), 383–388. MR 330155, DOI 10.1007/BF01343877
- Melvin Hochster, Topics in the homological theory of modules over commutative rings, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 24, Published for the Conference Board of the Mathematical Sciences by the American Mathematical Society, Providence, R.I., 1975. Expository lectures from the CBMS Regional Conference held at the University of Nebraska, Lincoln, Neb., June 24–28, 1974. MR 0371879
- Melvin Hochster and Joel L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115–175. MR 347810, DOI 10.1016/0001-8708(74)90067-X
- Irving Kaplansky, Commutative rings, Revised edition, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0345945
- Hans Kleppe, Deformation of schemes defined by vanishing of Pfaffians, J. Algebra 53 (1978), no. 1, 84–92. MR 498556, DOI 10.1016/0021-8693(78)90207-7
- Ernst Kunz, Almost complete intersections are not Gorenstein rings, J. Algebra 28 (1974), 111–115. MR 330158, DOI 10.1016/0021-8693(74)90025-8
- Andrew R. Kustin and Matthew Miller, Algebra structures on minimal resolutions of Gorenstein rings of embedding codimension four, Math. Z. 173 (1980), no. 2, 171–184. MR 583384, DOI 10.1007/BF01159957 —, Algebra structures on minimal resolutions of Gorenstein rings, Regional Conference at George Mason University (August, 1979) (to appear).
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- C. Peskine and L. Szpiro, Liaison des variétés algébriques. I, Invent. Math. 26 (1974), 271–302 (French). MR 364271, DOI 10.1007/BF01425554
- Jean-Pierre Serre, Algèbre locale. Multiplicités, Lecture Notes in Mathematics, vol. 11, Springer-Verlag, Berlin-New York, 1965 (French). Cours au Collège de France, 1957–1958, rédigé par Pierre Gabriel; Seconde édition, 1965. MR 0201468
- Richard P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 3, 475–511. MR 526968, DOI 10.1090/S0273-0979-1979-14597-X
- Junzo Watanabe, A note on Gorenstein rings of embedding codimension three, Nagoya Math. J. 50 (1973), 227–232. MR 319985
- Keiichi Watanabe, Some examples of one dimensional Gorenstein domains, Nagoya Math. J. 49 (1973), 101–109. MR 318140
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 287-307
- MSC: Primary 13C13; Secondary 13H10, 16A03
- DOI: https://doi.org/10.1090/S0002-9947-1982-0642342-4
- MathSciNet review: 642342