Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


Banach bundles of continuous functions and an integral representation theorem
HTML articles powered by AMS MathViewer

by Anthony Karel Seda PDF
Trans. Amer. Math. Soc. 270 (1982), 327-332 Request permission


A construction is given of a Banach bundle $p:A \to X$ whose fibres are spaces of continuous functions which vanish at infinity. A Riesz type integral representation theorem is established which describes all functional on $A$.
  • Sterling K. Berberian, Measure and integration, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1965. MR 0183839
  • N. Bourbaki, IntĂ©gration. III: ElĂ©ments de mathĂ©matique, Hermann, Paris, 1959.
  • Charles W. Burden, The Hahn-Banach theorem in a category of sheaves, J. Pure Appl. Algebra 17 (1980), no. 1, 25–34. MR 560783, DOI 10.1016/0022-4049(80)90021-3
  • J. M. G. Fell, An extension of Mackey’s method to Banach $^{\ast }$ algebraic bundles, Memoirs of the American Mathematical Society, No. 90, American Mathematical Society, Providence, R.I., 1969. MR 0259619
  • —, Induced representations and Banach $^{\ast }$-algebraic bundles, Lecture Notes in Math., vol. 582, Springer-Verlag, Berlin and New York, 1977.
  • Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266
  • A. K. Seda, Haar measures for groupoids, Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 5, 25–36. MR 427598
  • Anthony Karel Seda, Quelques rĂ©sultats dans la catĂ©gorie des groupoĂŻdes d’opĂ©rateurs, C. R. Acad. Sci. Paris SĂ©r. A-B 288 (1979), no. 1, A21–A24 (French, with English summary). MR 522010
  • Joel J. Westman, Harmonic analysis on groupoids, Pacific J. Math. 27 (1968), 621–632. MR 244443
Similar Articles
Additional Information
  • © Copyright 1982 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 270 (1982), 327-332
  • MSC: Primary 28C05; Secondary 22A30, 46H99, 46M99
  • DOI:
  • MathSciNet review: 642344