Szegő limit theorems for Toeplitz operators on compact homogeneous spaces
HTML articles powered by AMS MathViewer
- by I. I. Hirschman, D. S. Liang and E. N. Wilson
- Trans. Amer. Math. Soc. 270 (1982), 351-376
- DOI: https://doi.org/10.1090/S0002-9947-1982-0645321-6
- PDF | Request permission
Abstract:
Let $f$ be a real valued integrable function on a compact homogeneous space $M = K\backslash G$ and ${M_f}$ the operator of pointwise multiplication by $f$. The authors consider families of Toeplitz operators ${T_{f,P}} = P{M_f}P$ as $P$ ranges over a net of orthogonal projections from ${L^2}(M)$ to finite dimensional $G$-invariant subspaces. Necessary and sufficient conditions are given on the net in order that the distribution of eigenvalues of these Toeplitz operators is asymptotic to the distribution of values of $f$ in the sense of Szegö’s classical theorem for the circle. Explicit sequences satisfying these conditions are constructed for all compact Lie groups and for all Riemannian symmetric compact spaces.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
- Stephen S. Gelbart, A theory of Stiefel harmonics, Trans. Amer. Math. Soc. 192 (1974), 29–50. MR 425519, DOI 10.1090/S0002-9947-1974-0425519-8
- Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Henry Alan Krieger, Toeplitz operators on locally compact Abelian groups, J. Math. Mech. 14 (1965), 439–478. MR 0177261 David S. Liang, Eigenvalue distributions of Toeplitz operators, Thesis, Washington University, 1974.
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- G. Szegö, Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reellen positiven Funktion, Math. Ann. 76 (1915), no. 4, 490–503 (German). MR 1511838, DOI 10.1007/BF01458220
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 351-376
- MSC: Primary 47B35; Secondary 22C05, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1982-0645321-6
- MathSciNet review: 645321