Nonorientable surfaces in some non-Haken $3$-manifolds
HTML articles powered by AMS MathViewer
- by J. H. Rubinstein
- Trans. Amer. Math. Soc. 270 (1982), 503-524
- DOI: https://doi.org/10.1090/S0002-9947-1982-0645327-7
- PDF | Request permission
Abstract:
If a closed, irreducible, orientable $3$-manifold $M$ does not possess any $2$-sided incompressible surfaces, then it can be very useful to investigate embedded one-sided surfaces in $M$ of minimal genus. In this paper such $3$-manifolds $M$ are studied which admit embeddings of the nonorientable surface $K$ of genus $3$. We prove that a $3$-manifold $M$ of the above type has at most $3$ different isotopy classes of embeddings of $K$ representing a fixed element of ${H_2}(M, {Z_2})$. If $M$ is either a binary octahedral space, an appropriate lens space or Seifert manifold, or if $M$ has a particular type of fibered knot, then it is shown that the embedding of $K$ in $M$ realizing a specific homology class is unique up to isotopy.References
- Joan S. Birman and D. R. J. Chillingworth, On the homeotopy group of a non-orientable surface, Proc. Cambridge Philos. Soc. 71 (1972), 437–448. MR 300288, DOI 10.1017/s0305004100050714 Joan S. Birman and J. H. Rubinstein, Homeotopy groups of some non-Haken $3$-manifolds (to appear).
- Joan S. Birman, F. González-Acuña, and José M. Montesinos, Heegaard splittings of prime $3$-manifolds are not unique, Michigan Math. J. 23 (1976), no. 2, 97–103. MR 431175
- Glen E. Bredon and John W. Wood, Non-orientable surfaces in orientable $3$-manifolds, Invent. Math. 7 (1969), 83–110. MR 246312, DOI 10.1007/BF01389793 M. Culler, W. Jaco and J. H. Rubinstein, J. London Math. Soc. (to appear).
- John Milnor, Lectures on the $h$-cobordism theorem, Princeton University Press, Princeton, N.J., 1965. Notes by L. Siebenmann and J. Sondow. MR 0190942
- Peter Orlik, Seifert manifolds, Lecture Notes in Mathematics, Vol. 291, Springer-Verlag, Berlin-New York, 1972. MR 0426001
- J. H. Rubinstein, One-sided Heegaard splittings of $3$-manifolds, Pacific J. Math. 76 (1978), no. 1, 185–200. MR 488064
- J. H. Rubinstein, On $3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129–137. MR 531972, DOI 10.1090/S0002-9947-1979-0531972-6 W. Thurston, Geometry and topology of $3$-manifolds, Math. Notes, Princeton Univ. Press, Princeton, N. J. (to appear).
- Friedhelm Waldhausen, Gruppen mit Zentrum und $3$-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505–517 (German). MR 236930, DOI 10.1016/0040-9383(67)90008-0
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 270 (1982), 503-524
- MSC: Primary 57N10; Secondary 57N37, 57R95
- DOI: https://doi.org/10.1090/S0002-9947-1982-0645327-7
- MathSciNet review: 645327