## Saturation properties of ideals in generic extensions. I

HTML articles powered by AMS MathViewer

- by James E. Baumgartner and Alan D. Taylor PDF
- Trans. Amer. Math. Soc.
**270**(1982), 557-574 Request permission

## Abstract:

We consider saturation properties of ideals in models obtained by forcing with countable chain condition partial orderings. As sample results, we mention the following. If $M[G]$ is obtained from a model $M$ of GCH via any $\sigma$-finite chain condition notion of forcing (e.g. add Cohen reals or random reals) then in $M[G]$ every countably complete ideal on ${\omega _1}$ is ${\omega _3}$-saturated. If "$\sigma$-finite chain condition" is weakened to "countable chain condition," then the conclusion no longer holds, but in this case one can conclude that every ${\omega _2}$-generated countably complete ideal on ${\omega _1}$ (e.g. the nonstationary ideal) is ${\omega _3}$-saturated. Some applications to ${\mathcal {P}_{{\omega _1}}}({\omega _2})$ are included and the role played by Martin’s Axiom is discussed. It is also shown that if these weak saturation requirements are combined with some cardinality constraints (e.g. ${2^{{\aleph _1}}} > {({2^{{\aleph _0}}})^ + })$), then the consistency of some rather large cardinals becomes both necessary and sufficient.## References

- James E. Baumgartner,
*Almost-disjoint sets, the dense set problem and the partition calculus*, Ann. Math. Logic**9**(1976), no. 4, 401–439. MR**401472**, DOI 10.1016/0003-4843(76)90018-8 - James E. Baumgartner,
*Canonical partition relations*, J. Symbolic Logic**40**(1975), no. 4, 541–554. MR**398837**, DOI 10.2307/2271778 - James E. Baumgartner and Alan D. Taylor,
*Saturation properties of ideals in generic extensions. I*, Trans. Amer. Math. Soc.**270**(1982), no. 2, 557–574. MR**645330**, DOI 10.1090/S0002-9947-1982-0645330-7 - James E. Baumgartner, Alan D. Taylor, and Stanley Wagon,
*On splitting stationary subsets of large cardinals*, J. Symbolic Logic**42**(1977), no. 2, 203–214. MR**505505**, DOI 10.2307/2272121
—, - G. Fodor,
*Eine Bemerkung zur Theorie der regressiven Funktionen*, Acta Sci. Math. (Szeged)**17**(1956), 139–142 (German). MR**82450** - Thomas J. Jech,
*Some combinatorial problems concerning uncountable cardinals*, Ann. Math. Logic**5**(1972/73), 165–198. MR**325397**, DOI 10.1016/0003-4843(73)90014-4
—, - Thomas Jech and Karel Prikry,
*Ideals over uncountable sets: application of almost disjoint functions and generic ultrapowers*, Mem. Amer. Math. Soc.**18**(1979), no. 214, iii+71. MR**519927**, DOI 10.1090/memo/0214
R. Jensen, - Yuzuru Kakuda,
*Saturated ideals in Boolean extensions*, Nagoya Math. J.**48**(1972), 159–168. MR**316248** - Akihiro Kanamori,
*Perfect-set forcing for uncountable cardinals*, Ann. Math. Logic**19**(1980), no. 1-2, 97–114. MR**593029**, DOI 10.1016/0003-4843(80)90021-2 - Jussi Ketonen,
*Some combinatorial principles*, Trans. Amer. Math. Soc.**188**(1974), 387–394. MR**332481**, DOI 10.1090/S0002-9947-1974-0332481-5 - David W. Kueker,
*Countable approximations and Löwenheim-Skolem theorems*, Ann. Math. Logic**11**(1977), no. 1, 57–103. MR**457191**, DOI 10.1016/0003-4843(77)90010-9 - Kenneth Kunen,
*Saturated ideals*, J. Symbolic Logic**43**(1978), no. 1, 65–76. MR**495118**, DOI 10.2307/2271949 - K. Kunen and J. B. Paris,
*Boolean extensions and measurable cardinals*, Ann. Math. Logic**2**(1970/71), no. 4, 359–377. MR**277381**, DOI 10.1016/0003-4843(71)90001-5 - Richard Laver,
*Making the supercompactness of $\kappa$ indestructible under $\kappa$-directed closed forcing*, Israel J. Math.**29**(1978), no. 4, 385–388. MR**472529**, DOI 10.1007/BF02761175 - Menachem Magidor,
*Changing cofinality of cardinals*, Fund. Math.**99**(1978), no. 1, 61–71. MR**465868**, DOI 10.4064/fm-99-1-61-71
—, - Telis K. Menas,
*On strong compactness and supercompactness*, Ann. Math. Logic**7**(1974/75), 327–359. MR**357121**, DOI 10.1016/0003-4843(75)90009-1 - Telis K. Menas,
*Consistency results concerning supercompactness*, Trans. Amer. Math. Soc.**223**(1976), 61–91. MR**540771**, DOI 10.1090/S0002-9947-1976-0540771-8 - E. C. Milner and R. Rado,
*The pigeon-hole principle for ordinal numbers*, Proc. London Math. Soc. (3)**15**(1965), 750–768. MR**190003**, DOI 10.1112/plms/s3-15.1.750 - K. L. Prikry,
*Changing measurable into accessible cardinals*, Dissertationes Math. (Rozprawy Mat.)**68**(1970), 55. MR**262075** - Robert M. Solovay,
*Real-valued measurable cardinals*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 397–428. MR**0290961** - Alan D. Taylor,
*Regularity properties of ideals and ultrafilters*, Ann. Math. Logic**16**(1979), no. 1, 33–55. MR**530430**, DOI 10.1016/0003-4843(79)90015-9 - Alan D. Taylor,
*On saturated sets of ideals and Ulam’s problem*, Fund. Math.**109**(1980), no. 1, 37–53. MR**594324**, DOI 10.4064/fm-109-1-37-53 - Stanley Wagon,
*The saturation of a product of ideals*, Canadian J. Math.**32**(1980), no. 1, 70–75. MR**559787**, DOI 10.4153/CJM-1980-007-9

*Structural properties of ideals*, Dissertationes Math. (to appear). C. DiPrisco,

*Combinatorial properties and supercompact cardinals*, Ph.D. Thesis, M.I.T., 1976. A. Dodd and R. Jensen,

*The core model*, circulated notes (1976). P. Erdös, A. Hajnal, A. Máté and R. Rado,

*Combinatorial set theory*:

*Partition relations for cardinals*(to appear).

*On the number of generators of an ideal*(to appear).

*Marginalia to a theorem of Silver*, circulated notes (1975).

*On the singular cardinals problem*. II, Ann. of Math. (to appear).

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**270**(1982), 557-574 - MSC: Primary 03C62; Secondary 03E05, 03E35, 03E40, 03E55
- DOI: https://doi.org/10.1090/S0002-9947-1982-0645330-7
- MathSciNet review: 645330