The sums of powers theorem for commuting block maps
HTML articles powered by AMS MathViewer
- by Frank Rhodes
- Trans. Amer. Math. Soc. 271 (1982), 225-236
- DOI: https://doi.org/10.1090/S0002-9947-1982-0648088-0
- PDF | Request permission
Abstract:
A block map is a map $f:{\{ 0, 1\} ^n} \to \{ 0, 1\}$ for some $n \geqslant 1$. A block map $f$ induces an endomorphism ${f_\infty }$ of the full $2$-shift $(X, \sigma )$. Composition of block maps is defined in such a way that ${(f \circ g)_\infty } = {f_\infty } \circ {g_\infty }$. In this paper some recent results concerning the set $\{ g|g \circ f = f \circ g\}$ for certain types of block maps $f$ are extended.References
- Ethan M. Coven, G. A. Hedlund, and Frank Rhodes, The commuting block maps problem, Trans. Amer. Math. Soc. 249 (1979), no. 1, 113–138. MR 526313, DOI 10.1090/S0002-9947-1979-0526313-4
- G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320–375. MR 259881, DOI 10.1007/BF01691062
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 271 (1982), 225-236
- MSC: Primary 54H20; Secondary 58F11
- DOI: https://doi.org/10.1090/S0002-9947-1982-0648088-0
- MathSciNet review: 648088