Tauberian conditions for $L^{1}$-convergence of Fourier series
HTML articles powered by AMS MathViewer
- by Časlav V. Stanojević
- Trans. Amer. Math. Soc. 271 (1982), 237-244
- DOI: https://doi.org/10.1090/S0002-9947-1982-0648089-2
- PDF | Request permission
Abstract:
It is proved that Fourier series with asymptotically even coefficients and satisfying ${\lim _{\lambda \to 1}}\lim {\sup _{n \to \infty }}\sum _{j = n}^{[\lambda n]}{j^{p - 1}}|\Delta \hat f(j){|^p} = 0$, for some $1 < p \leqslant 2$, converge in ${L^1}$-norm if and only if $||\hat f(n){E_n} + \hat f( - n){E_{ - n}}|| = o(1)$, where ${E_n}(t) = \sum _{k = 0}^n{e^{ikt}}$. Recent results of Stanojević [1], Bojanic and Stanojević [2], and Goldberg and Stanojević [3] are special cases of some corollaries to the main theorem.References
- Časlav V. Stanojević, Classes of $L^{1}$-convergence of Fourier and Fourier-Stieltjes series, Proc. Amer. Math. Soc. 82 (1981), no. 2, 209–215. MR 609653, DOI 10.1090/S0002-9939-1981-0609653-4
- R. Bojanić, An estimate for the rate of convergence of a general class of orthogonal polynomial expansions of functions of bounded variation, Mathematical analysis and its applications (Kuwait, 1985) KFAS Proc. Ser., vol. 3, Pergamon, Oxford, 1988, pp. 1–16. MR 951652 R. R. Goldberg and Č. V. Stanojević, ${L^1}$-convergence and Segal algebras of Fourier series, preprint (1980). J. Karamata, Teorija i praksa Stieltjes-ova integrala, Srpska Akademija Nauka, Beograd, 1949. —, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53. G. H. Hardy, Theorems relating to the convergence and summability of slowly oscillating series, Proc. London Math. Soc. Ser. 2 8 (1909).
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 271 (1982), 237-244
- MSC: Primary 42A16; Secondary 42A20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0648089-2
- MathSciNet review: 648089