Abstract. It is proved that Fourier series with asymptotically even coefficients and satisfying \(\lim_{\lambda \to \infty} \limsup_{n \to -\infty} \sum_{j=1}^{\lambda n} j^{p-1} |\hat{f}(j)|^p = 0 \), for some \(1 < p \leq 2 \), converge in \(L^1 \)-norm if and only if \(\| \hat{f}(n)E_n + \hat{f}(-n)E_{-n} \| = o(1) \), where \(E_n(t) = \sum_{k=0}^{n} e^{ikt} \). Recent results of Stanojević [1], Bojanic and Stanojevic [2], and Goldberg and Stanojevic [3] are special cases of some corollaries to the main theorem.

1. Introduction. The space \(L^1(T) \) of complex functions integrable on \(T = \mathbb{R}/2\pi \mathbb{Z} \) does not admit convergence in norm. Consequently, convergence in norm of the partial sums \(S_n(f) = S_n(f, t) = \sum_{|j| \leq n} \hat{f}(j)e^{ijt} \) to \(f \in L^1(T) \) cannot be characterized in terms of Fourier coefficients without additional assumptions about the sequence \(\{ \hat{f}(n) \} \).

In the case of even coefficients \((\hat{f}(n) = \hat{f}(-n) \) for all integers \(n \) satisfying certain regularity and/or speed conditions, it is well known that

\[
\| S_n(f) - f \| = o(1), \quad n \to \infty,
\]

is equivalent with

\[
\hat{f}(n)\log n = o(1), \quad n \to \infty.
\]

(A survey of classical and recent results of this kind can be found in [1, 2 and 3].)

Most recent results concerning the equivalence between (1.1) and (1.2) are due to Stanojević [1], Bojanic and Stanojevic [2] and Goldberg and Stanojevic [3].

In [1] it is proved that if \(\{ \hat{f}(n) \} \) is even and satisfies

\[
\frac{1}{n} \sum_{k=1}^{n} k|\Delta \hat{f}(k)| = o(1), \quad n \to \infty,
\]

and

\[
n|\Delta \hat{f}(n)| = O(1), \quad n \to \infty,
\]

then (1.1) is equivalent with (1.2).

Goldberg and Stanojević [3] proved that if

\[
\{(\hat{f}(n) - \hat{f}(-n))\log n\} \text{ is a null-sequence of bounded variation,}
\]

Received by the editors March 2, 1981.
1980 Mathematics Subject Classification. Primary 42A20, 42A32.
Key words and phrases. \(L^1 \)-convergence of Fourier series.

©1982 American Mathematical Society
0002-9947/81/0000-0365/002.75

237
and if for some $1 < p \leq 2$

$$\frac{1}{n} \sum_{j=n}^{2n} j^p |\Delta \hat{f}(j)|^p = o(1), \quad n \to \infty,$$

then (1.1) if and only if (1.2). An earlier result of Bojanic and Stanojević [2] is a corollary to the Goldberg-Stanojević theorem.

In this paper I shall extend and generalize the Goldberg-Stanojević theorem in two ways. Instead of (1.5), a weaker condition will be assumed, i.e.,

$$\frac{1}{n} \sum_{j=1}^{n} |\hat{f}(j) - \hat{f}(-j)| \lg j = o(1), \quad n \to \infty,$$

(AE)

$$\lim_{n \to \infty} \limsup_{j \to n} \sum_{j=n}^{\lambda \cdot n} |\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j = 0,$$

and (1.6) will be relaxed as follows:

(HK) $$\lim_{\lambda \to 1} \limsup_{n \to \infty} \sum_{j=n}^{\lambda \cdot n} j^{p-1} |\Delta \hat{f}(j)|^p = 0,$$

for some $1 < p \leq 2$.

A sequence of complex numbers satisfying (AE) is called asymptotically even. Clearly, every even sequence satisfies (AE).

The condition (HK) is a Tauberian condition of Hardy-Karamata [4] kind. Plainly (1.6) implies (HK).

As a consequence of the main theorem it will follow that the condition (1.3) is superfluous, and that (1.4) can be weakened if a certain speed of $\|\sigma_n(f) - f\|$ is assumed, where $\sigma_n(f)$ is the Fefér sum of $S_n(f)$.

2. Main theorem. Fourier series considered throughout this section are the series with asymptotically even coefficients. That is

$$\frac{1}{n} \sum_{j=1}^{n} |\hat{f}(j) - \hat{f}(-j)| \lg j = o(1), \quad n \to \infty,$$

(2.1.1)

$$\lim_{\lambda \to 1} \limsup_{n \to \infty} \sum_{j=n}^{\lambda \cdot n} |\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j = 0.$$

Main Theorem. Let $S[f] \sim \sum_{|n| \to \infty} \hat{f}(n)e^{int}$ be the Fourier series of $f \in L^1(T)$ with asymptotically even coefficients.

If for some $1 < p \leq 2$

(HK) $$\lim_{\lambda \to 1} \limsup_{n \to \infty} \sum_{j=n}^{\lambda \cdot n} j^{p-1} |\Delta \hat{f}(j)|^p = 0,$$

then $\|S_n(f) - f\| = o(1), n \to \infty$, if and only if

$$\|\hat{f}(n)E_n + \hat{f}(-n)E_{-n}\| = o(1), \quad n \to \infty,$$

where $E_n(t) = \sum_{k=0}^{n} e^{ikt}$.

Proof. It suffices to show that

$$
(2.3) \limsup_{n \to \infty} \left| \left| S_n(f) - f \right| - \left| \hat{f}(n)E_n + \hat{f}(-n)E_{-n} \right| \right| = 0.
$$

Let $\lambda > 1$ and $n > 1$. Then the following identity can be established:

$$
S_n(f, t) - f(t) - (\hat{f}(n)E_n(t) + \hat{f}(-n)E_{-n}(t))
$$

$$
= \left[\frac{\lambda n}{[\lambda n]} - n \right] \left[\sigma_{[\lambda n]}(f, t) - f(t) \right] - \frac{n + 1}{[\lambda n]} \left[\sigma_n(f, t) - f(t) \right]
$$

$$
\quad - \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \frac{1}{\lambda n} \left[\Delta \hat{f}(j) \right] E_j(t)
$$

$$
\quad - \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \frac{1}{\lambda n} \left[\Delta \hat{f}(-j) \right] E_{-j}(t).
$$

The Dirichlet kernel can be written as

$$
D_j(t) = E_j(t) + E_{-j}(t) - 1.
$$

Thus the third and the fourth terms on the right-hand side of (2.4) can be grouped in the following way:

$$
I_{1n} = \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \hat{f}(j)D_j(t)
$$

$$
\quad - \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} (\hat{f}(j) - \hat{f}(-j))E_{-j}(t) + \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \hat{f}(j);
$$

and the fifth and the sixth terms as

$$
I_{2n} = \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \left[\frac{\lambda n}{[\lambda n]} + \frac{1}{\lambda n} - 1 \right] \frac{\Delta \hat{f}(j)}{\Delta \hat{f}(j)} D_j(t)
$$

$$
\quad - \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \left[\frac{\lambda n}{[\lambda n]} + \frac{1}{\lambda n} - 1 \right] \frac{\Delta \hat{f}(j) - \hat{f}(-j)}{\Delta \hat{f}(j) - \hat{f}(-j)} E_{-j}(t)
$$

$$
\quad + \frac{1}{[\lambda n]} - n \sum_{j=1}^{[\lambda n]} \left[\frac{\lambda n}{[\lambda n]} + \frac{1}{\lambda n} - 1 \right] \Delta \hat{f}(j).
$$
Taking the norm of both sides of (2.5) we obtain

\[\|I_{1n}\| \leq \frac{1}{[\lambda n] - n} \left\| \sum_{j=n}^{[\lambda n]} \hat{f}(j) D_j(t) \right\| \]

\[+ \frac{1}{[\lambda n] - n} \sum_{j=n}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)| \log j \]

(2.7)

\[+ \frac{1}{[\lambda n] - n} \sum_{j=n}^{[\lambda n]} |\hat{f}(j)| \]

\[= J_n + \frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)| \log j \right) \]

\[+ \frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j)| \right). \]

Applying first the Hölder inequality and then the Hausdorff-Young equality to \(J_n \), we have

\[J_n \leq A_p \frac{[\lambda n]}{[\lambda n] - n} \left(\sum_{j=n}^{[\lambda n]} |\hat{f}(j)|^p \right)^{1/p} = A_p \frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j)|^p \right)^{1/p} \]

where \(A_p \) is an absolute constant depending on \(p \), and \(1/p + 1/q = 1 \). The last term in (2.7) is majorized by

\[\frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j)|^p \right)^{1/p} \]

Hence

\[\|I_{1n}\| \leq C_1 \frac{[\lambda n]}{[\lambda n] - n} \left(\sum_{j=1}^{[\lambda n]} |\hat{f}(j)|^p \right)^{1/p} \]

\[+ C_2 \frac{[\lambda n]}{[\lambda n] - n} \left(\sum_{j=1}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)| \log j \right), \]

where \(C_1 \) and \(C_2 \) are absolute constants.

In a similar manner we obtain

\[\|I_{2n}\| \leq C_3 \sum_{j=n}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))| \log j + C_4 \left(\sum_{j=n}^{[\lambda n]} j^{p-1} |\Delta \hat{f}(j)|^p \right)^{1/p} \]

where \(C_3 \) and \(C_4 \) are absolute constants.
Combining estimates for both $\|I_{1n}\|$ and $\|I_{2n}\|$ we get

$$
\|S_n(f) - f\| - \|\hat{f}(n)E_n + \hat{f}(-n)E_{-n}\|
\leq \frac{[\lambda n]}{[\lambda n] - n} \|\sigma_{[\lambda n]}(f) - f\|
+ \frac{n + 1}{[\lambda n] - n} \|\sigma_n(f) - f\| + C_1 \frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j)|^p \right)^{1/p}
$$

(2.8)

$$
+ C_2 \frac{[\lambda n]}{[\lambda n] - n} \left(\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)||\lg j \right)

+ C_3 \sum_{j=1}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))||\lg j + C_4 \left(\sum_{j=1}^{[\lambda n]} j^{p-1}|\Delta \hat{f}(j)|^p \right)^{1/p}.
$$

Since for $\lambda > 1$ we have $\lambda n/(\lambda n - n) \sim \lambda/\lambda - 1$, $n \to \infty$, it follows that

$$
\limsup_{n \to \infty} \frac{[\lambda n]}{[\lambda n] - n} C_n = 0,
$$

for any null-sequence $\{C_n\}$.

After taking the limit superior of both sides of (2.8) we get

$$
\limsup_{n \to \infty} \left| \|S_n(f) - f\| - \|\hat{f}(n)E_n + \hat{f}(-n)E_{-n}\| \right|
$$

(2.9)

$$
\leq C_3 \limsup_{n \to \infty} \sum_{j=n}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))||\lg j

+ C_4 \limsup_{n \to \infty} \left(\sum_{j=n}^{[\lambda n]} j^{p-1}|\Delta \hat{f}(j)|^p \right)^{1/p}.
$$

For $\|\sigma_n(f) - f\| = o(1)$, $n \to \infty$, $\hat{f}(n) = o(1)$, $n \to \infty$, and

$$
\frac{1}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)||\lg j = o(1), \quad n \to \infty,
$$

because of (2.1.1).

Taking the limit as $\lambda \to 1$ of both sides of (2.9) we obtain

$$
\lim_{\lambda \to 1} \limsup_{n \to \infty} \left| \|S_n(f) - f\| - \|\hat{f}(n)E_n + \hat{f}(-n)E_{-n}\| \right|
$$

$$
\leq C_3 \lim_{\lambda \to 1} \limsup_{n \to \infty} \sum_{j=n}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))||\lg j

+ C_4 \lim_{\lambda \to 1} \limsup_{n \to \infty} \left(\sum_{j=n}^{[\lambda n]} j^{p-1}|\Delta \hat{f}(j)|^p \right)^{1/p}.
$$
Because of (2.1.2) and (HK) we finally have (2.3), i.e.

$$\limsup_{n \to \infty} \left| \| S_n(f) - f \| - \| \hat{f}(n) E_n + \hat{f}(-n) E_{-n} \| \right| = 0.$$

This completes the proof of the main theorem.

3. Corollaries and additional results. By strengthening either (2.1.2) or (HK), or both, one can obtain a number of corollaries that, as a special case, contain the results of Stanojević [1], Bojanic and Stanojević [2], and Goldberg and Stanojević [3].

The class of complex null-sequences \(\{c_n\} \) satisfying

$$\frac{1}{n} \sum_{k=1}^{n} k|\Delta c_k| = o(1), \quad n \to \infty,$$

includes as a proper subclass null-sequences of bounded variation.

Corollary 3.1. Let \(S[f] = \sum_{|n| < \infty} \hat{f}(n)e^{int} \) be the Fourier series of \(f \in L^1(T) \), and let \(\{(\hat{f}(n) - \hat{f}(-n))\lg n\} \) satisfy (3.1). If (HK) holds then

$$\| S_n(f) - f \| = o(1), \quad n \to \infty,$$

if and only if

$$\hat{f}(n)\lg n = o(1), \quad n \to \infty.$$

Proof. The condition (2.1.1) is satisfied. It remains to show that (2.1.2) holds. Since for \(\lambda > 1 \)

$$\sum_{j=n}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j \leq \frac{1}{n} \sum_{j=n}^{[\lambda n]} j|\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j$$

$$\leq \frac{\lambda}{[\lambda n]} \sum_{j=1}^{[\lambda n]} j|\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j$$

$$\leq \frac{\lambda}{[\lambda n]} \sum_{j=1}^{[\lambda n]} j|\Delta((\hat{f}(j) - \hat{f}(-j))\lg j) + \frac{\lambda}{[\lambda n]} \sum_{j=1}^{[\lambda n]} |\hat{f}(j) - \hat{f}(-j)| \lg(1 + 1/j)^{-j},$$

it follows that if \(\{(\hat{f}(n) - \hat{f}(-n))\lg n\} \) satisfies (3.1) then (2.1.2) holds.

A special case of Corollary 3.1 is the Goldberg-Stanojević theorem. Indeed, let \(1 < \lambda \leq 2 \). Then

$$\sum_{j=n}^{[\lambda n]} j^{\lambda - 1}|\Delta \hat{f}(j)|^p \leq \frac{2}{n} \sum_{j=n}^{2n} j^p|\Delta \hat{f}(j)|^p.$$

Corollary 3.2. Let \(S[f] = \sum_{|n| < \infty} \hat{f}(n)e^{int} \) be the Fourier series of \(f \in L^1(T) \), and let (2.1.1) hold. If (HK) holds and if

$$n|\Delta(\hat{f}(n) - \hat{f}(-n))| \lg n = O(1), \quad n \to \infty,$$

then (1.1) is equivalent with (1.2).
Proof. Due to (3.2) we have \(\sum_{j=n}^{[\lambda n]} |\Delta(\hat{f}(j) - \hat{f}(-j))| \lg j \leq C \lg \lambda \), where \(C \) is an absolute constant. Hence \(\{\hat{f}(n)\} \) is an asymptotically even sequence.

Since (3.2) is a summability condition in the sense of Hardy [6], from (2.1.1) it follows that

\[
(f(n) - \hat{f}(-n)) \lg n = o(1), \quad n \to \infty.
\]

But (3.3) implies that (2.2) is equivalent with (1.2), for \(\|D_n\| = (4/\pi^2)\lg n + O(1), n \to \infty \).

Corollary 3.3. Let \(S[f] \sim \sum_{|n|<\infty} \hat{f}(n)e^{int} \) be the Fourier series of \(f \in L^1(T) \) with even coefficients. If (HK) holds then (1.1) is equivalent with (1.2).

A special case of this corollary is the main theorem of Bojanic and Stanojevic [2].

Proof. Every even sequence is asymptotically even.

Corollary 3.4. Let \(S[f] \sim \sum_{|n|<\infty} \hat{f}(n)e^{int} \) be the Fourier series of \(f \in L^1(T) \) with even coefficients. If \(n\Delta \hat{f}(n) = O(1), n \to \infty \), then

\[
\|S_n(f) - f\| = o(1), \quad n \to \infty
\]

if and only if

\[
\hat{f}(n) \lg n = o(1), \quad n \to \infty.
\]

Proof. The condition \(n\Delta \hat{f}(n) = O(1), n \to \infty \) implies (HK), for

\[
\sum_{j=n}^{[\lambda n]} j^{p-1} |\Delta \hat{f}(j)|^p \leq C \lg \lambda,
\]

where \(C \) is an absolute constant.

A special case of Corollary 3.4 is the Stanojevic theorem.

In what follows it will be assumed that, for simplicity's sake, \(\{\hat{f}(n)\} \) are even sequences.

All classical conditions as well as (HK) imply that

\[
n^\alpha \Delta \hat{f}(n) = o(1), \quad n \to \infty, \quad \text{for some } 0 < \alpha < 1.
\]

It seems unlikely that (3.4) would imply that (1.1) \(\Leftrightarrow \) (1.2). But a slightly stronger form of (3.4) such as

\[
n^{1/p} \max_{n \leq j \leq [n/\lg n]} |\Delta \hat{f}(j)| = o(1), \quad n \to \infty,
\]

for some \(1 < p \leq 2 \) and \(1/p + 1/q = 1 \), and certain conditions on the speed with which \(\|\sigma_n(f) - f\| \) goes to zero as \(n \to \infty \) could imply that (1.1) \(\Leftrightarrow \) (1.2).

Proposition 3.1. Let \(S[f] \sim \sum_{|n|<\infty} \hat{f}(n)e^{int} \) be the Fourier series of \(f \in L^1(T) \) with even coefficients. If, for some \(1 < p \leq 2 \) and \(1/p + 1/q = 1 \), (3.5) holds and

\[
\lg n \|\sigma_n(f) - f\| = o(1), \quad n \to \infty,
\]

then (1.1) if and only if (1.2).
PROOF. Let \(m > n > 1 \). Then using the same technique as in the proof of the main theorem one can obtain the inequality

\[
\|S_n(f) - f\| - |\hat{f}(n)| \leq \frac{m+1}{m-n} \|\sigma_m(f) - f\| + \frac{n+1}{m-n} \|\sigma_n(f) - f\|
\]

\((3.7) \)

\[
+ C_1 \left(\sum_{j=n}^m j^{p-1} |\Delta \hat{f}(j)|^p \right)^{1/p} \left(\frac{m}{n} \right)^{1/q}
\]

\[
+ C_2 \left(\frac{1}{m-n} \sum_{j=n}^m |\hat{f}(j)|^p \right)^{1/p} \left(\frac{m}{m-n} \right)^{1/q},
\]

where \(C_1 \) and \(C_2 \) are absolute constants.

Let \(m = n + \lfloor n/\log n \rfloor \). Then (3.7) becomes

\[
\|S_n(f) - f\| - |\hat{f}(n)| \leq B_1 \left[\log \left(n + \left\lfloor n/\log n \right\rfloor \right) \right] \|\sigma_n + \lfloor n/\log n \rfloor (f) - f\|
\]

\[
+ B_2 [\log n] \|\sigma_n(f) - f\| + B_3 \left(\sum_{j=n}^{n + \lfloor n/\log n \rfloor} j^{p-1} |\Delta \hat{f}(j)|^p \right)^{1/p}
\]

\[
+ B_4 \left(\frac{1}{n} \sum_{j=n}^{n + \lfloor n/\log n \rfloor} |\hat{f}(j)|^p \right)^{1/p} \log n
\]

where \(B_1, \ldots, B_4 \) are absolute constants.

Due to (3.5) and (3.6), for sufficiently large \(n \) we have

\[
\|S_n(f) - f\| - |\hat{f}(n)| \log n = O \left(n [\log n]^{-1/p} \max_{n < j < n + \lfloor n/\log n \rfloor} |\Delta \hat{f}(j)| \right) + o(1).
\]

This completes the proof of Proposition 3.1.

If instead of \(\lfloor n/\log n \rfloor \) we take a sequence of integers \(\lfloor n/L(n) \rfloor \) where \(L(n) \) is a slowly varying function in the sense of Karamata [5], such that \(L(n + \lfloor n/L(n) \rfloor) \geq L(n) \) for all \(n \) greater than some \(n_0 \), we can obtain a generalization of Proposition 3.1.

REFERENCES

5. _______. Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38–53.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401