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ON THE CONSTRUCTION AND DISTRIBUTION

OF A LOCAL MARTINGALE WITH A GIVEN ABSOLUTE VALUE

BY

EDWIN PERKINS

Abstract. A local martingale is constructed on an appropriate Loeb space whose

absolute value equals a given nonnegative local submartingale. Nonstandard analysis

is used to reduce the problem to the discrete time setting where the original

construction of D. Gilat is fairly simple. This approach has the advantage of

allowing explicit computations. In particular, the distribution of the local martingale

is described in terms of the Doob-Meyer decomposition of the original local

submartingale.

1. Introduction and statement of results. In [6] D. Gilat proved that every

nonnegative submartingale x is equal in law to the absolute value of a martingale m.

His construction, however, did not shed any light on the nature of this martingale.

Several other authors, including Protter and Sharpe [13], Maisonneuve [11], and

Barlow and Yor [4] have given more transparent constructions of m on an enlarge-

ment of the space on which x is defined (by an enlargement of (il, <$, P) we mean a

space of the form (il X il', "JX W, P X P')). These constructions have made addi-

tional assumptions on x—notably x(t) A x(t~ ) > 0 for all / > 0, which is the case

in [11 and 13]. Recently M. T. Barlow has shown in [3] that if x is a nonnegative

submartingale on (il, f, P, 'S/) and if there is a random variable on (il, f, P) which

has a continuous distribution function and is independent of V r;s0 §j, then there is

a filtration {<Dlt; 11 > 0} and a martingale m on (il, <$, P, 9Hr) such that | m | = x,

*§t E 911,, and every "^-martingale is an 91c(-martingale. It is our aim to use

nonstandard analysis to give an intuitive construction of a (local) martingale, m,

whose absolute value equals a given nonnegative (local) submartingale, x. Our

construction was carried out independently of Barlow's work and complements his

results since the finite-dimensional distribution of m are described in terms of the

Doob-Meyer decomposition of x. The construction uses nonstandard analysis to

reduce the continuous time problem to a discrete time problem, where the construc-

tion of Gilat is fairly simple.

To state a precise version of the main result we will need the following definition

that appears in Aldous [1]. The notation (il, f, P, Wt) indicates that (W, 11 > 0} is a

right-continuous filtration on the complete probability space (il, CS, P) and that %

includes all the P-null sets.
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262 EDWIN PERKINS

Definition 1.1. Suppose x' is an adapted process on (ß', f', P',%') (i = 1,2)

with sample paths in

D(M) = {y: [0, oo) -» M \y(-) is right continuous with left limits},

where M is a Polish space. If $: D(M) -» Rd is bounded and Borel measurable (give

D(M) the Skorokhod Jx topology as in Billingsley [5] and Stone [14]), let L^(t)

denote a right-continuous version of E'(<p(x')\%') (i = 1,2). Then (xx,<5.x) and

(x2, f2) are synonomous (we write (jc1, f.1) = (x2, f.2)) if t(L\) = £(L2) for all </>

and J, where £(Z^) is the law of L\ on D(f^).    □

The above definition is easily shown to be equivalent to that in Aldous [1]. Note

that if (jc1, ÍF.1) = (x1, ?F.2), then xx and x2 have the same distribution on D(M).

Our main result, which holds with or without the expressions in parentheses, is the

following:

Theorem 1.2. If y is a nonnegative (local) submartingale on (X, §, Q, §,), there is a

(local) martingale m on some (il, *$, P, 1ft) such that

(1.1) ((\m\,a),$.)=((y,b),§.),

where a and b are the increasing processes in the Doob-Meyer decompositions of \m\

andy, respectively. Moreover, m may be chosen so that

(1.2) E(m(0)\\m\ , a) = 0   a.s.,

andife0E {-1,0,1}, {ex,... ,en} E {-1,1}, B0,... ,B„ E 6J((0, oo)), andO = t0 < tx

< • • • < t„, then

P((m(t0),...,m(t„)) Ee0B0X ■•■ Xe„Bn)

= fl((y(t0),y(tx),...,y(tn)) E\e0\B0XBx X ■■• XB„)

(1.3) _ "   / Í
X(e2+l)   '2-^n ln-eI._1e(.exp[-jr%(J)"'d&r(i)

X      II     (l-(y(s-) + Ab(s)y]Ab(s)))dQ,

where bc(t) = }¿I(àb(s) = 0) db(s).    D

Since the filtration {§,} is an integral part of the submartingale y, it seems natural

to require that the filtration for m, {ÇF,}, be equivalent to {§¡} insofar as they relate

to (| m |, a) and (y, b), respectively. This formulation of the existence problem has

the advantage of leading to corresponding uniqueness results which are presented in

[12].
In §2 we construct a local martingale on a Loeb space whose absolute value equals

a given nonnegative local submartingale. The finite-dimensional distributions of m

are computed in §3. The proof of Theorem 1.2 then amounts to showing that the

class of probability spaces considered in §2 is large enough. In §4 we establish an

important property of m, which in [12] is shown to uniquely determine several
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additional properties of any local martingale (m(t), %) that satisfies (1.1). §5

contains the proof of a technical lifting theorem needed in §2.

The presentation assumes a knowledge of nonstandard methods in probability

theory. A good introduction to the subject may be found in Loeb [10]. Keisler [8]

and Hoover and Perkins [7] contain further background material.

2. Construction of the local martingale. Our setting is that used in Hoover and

Perkins [7] (hereafter abbreviated [H.P.]). We work in an w,-saturated enlargement

of a superstructure V(S), where RES. Consider an internal probability space

(ß1, éE1, Px) on which {éE,1 11 E T} is a nondecreasing internal sequence of *-sub-a-

fields indexed by T = {klxt \ k E *N0} (Ai is a fixed positive infinitesimal and

*N0 = *N U {0}). Elements of T are denoted by /, u, v, etc. The Loeb space

generated by the above space is (ß1, ^' = L(éE'), P{ = L(PX)) (i.e., Px is the unique

extension of °PX to a(éE'), and C3X is the Px-completion of o(@})), and a filtration on

(fi',f') is defined by

%x = [ n«(«;)) vgl1,
^ °t_>t '

where 9l' is the class of all P'-null sets. It is clear that {<?/ | / > 0} is right

continuous. The 4-tuple (ß\?F', Px,<§}) constructed in this manner is called the

adapted Loeb space generated by (ß1, éE,, Px, &]). The reader is referred to Loeb [9]

and Anderson [2] for background material on Loeb spaces. We will need the

following elementary results from [H.P.].

Lemma 2.1 [H. P., Lemma 3.3 and Theorem 3.2]. (a) If Y is an internal

S-integrable random variable on (il], éE1, Px) and ty is an internal *-sub-a-field o/éE',

then

°E\Y\ty) = Ex(°Y\L(ty))    a.s.

(b) If y: ß1 -» Rd is <$x-measurable for some t > 0, then there is a t » / and an

internal (immeasurable random variable Y: ß1 —► *R</ such that °Y = y a.s.     D

Unless otherwise indicated, all stochastic processes have sample paths in D = D(R).

Lower case letters denote standard processes on the appropriate Loeb space, while

upper case letters are used to denote internal processes on some internal probability

space.

Let xx(t) be a nonnegative local submartingale on (ilx,Wx, Px, %x). That is, there

is a sequence of stopping times {Í/}, increasing to oo a.s., such that xx(Uj A /) is an

{Sj1}-submartingale for all/ Since xx is locally of class D, it has a Doob-Meyer

decomposition xl = nx + a1 (nx is a local martingale and ax is an increasing

predictable process that equals zero at / = 0). In practice we will construct xx and

(ß1, éE1, Px, éE,1) from the (local) submartingale, y, of Theorem 1.2 as follows. Let

(il],&x,Px,(3xy) = *(X,Q,Q,6l).

Then xx will be the standard part of *y(-,a) in the Skorokhod Jx topology. Using

Lemma 2.1  and some elementary properties of synonymity, one can show that
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((xl, a]), %l) = ((y, b), §.). (The details of these arguments are presented at the end

of §3 with the proof of Theorem 1.2.) Therefore in order to prove Theorem 1.2, we

may replace ((y,b),§.) with ((xx, ax), ÍF.1). We will construct a local martingale

whose absolute value is x' in three steps:

1. Lift «' and ax to internal processes on T X ß. (This reduces the problem to the

simpler discrete time setting.)

2. Construct an internal martingale M that solves the discrete time problem.

3. "Push M down" to the required local martingale.

As the first step is the most technical, the proof of the main "lifting theorem" is

deferred until §5. Some terminology from [H.P.] is required in order to state the

result.

Terminology 2.2. An internal nondecreasing sequence of *-sub-o-fields of éE1,

{\\t E T} is an internal filtration if %x = (D ^>ta(%)) V %\ A ^-stopping

time is an internal mapping V from ß' to T U {oo} such that {V = {} E %t for all /

in T. If °V = U a.s., then Fis a ®,-lifting of U. In what follows, we consider a fixed

internal filtration {®,}.

An internal stochastic process X: T X ß1 -^ *Rd (i.e. X is internal and X(t_, ■ ) is

éE1-measurable for all / in T) is of class SD if for a.a. to, °X(t) E Rd for all / in

ns(T) = {t_ET\ °t < oo}, and

(2.1) st(X)(t) = lim°X(t)
°t_it

defines a function, st(A'), in D(Rd). We define st(X) = 0 for to such that the right

side of (2.1) is not well defined for some t > 0. Note that if Xis SD and ^-adapted

(i.e., X(t) is ^-measurable for all t in T) then s^X) is <#/-adapted. An SD process

X is of class SDJ if for a.a. co, X(t) « X(0) for all { « 0, and for each / in [0, oo)

there is a i(co) « / such that X(u) « st(X)(t) if u > t and u » /, and X(u) »

st( X)(r ) if u < t and u « /. We say X is an SD (respectively, SDJ) lifting of x if X

is SD (respectively, SDJ) and st(X)(t) = x(t) for all t > 0 a.s. Note that these

definitions include the case when X(t, u) = X(t) is deterministic.

A <$,-adapted SD process X: T X ß — *Rd is 5-locally integrable if there is a

nondecreasing sequence of <$r-stopping times {Vy} such that ||X(F„A/)|| is S-

integrable (see Anderson [2, Definition 3]) for all (t, n) in TX N, lim,,^^ °V„ = oo

a.s., °Vn < oo a.s. and °X(Vn) = st(A")(°K„) a.s. The sequence {Vy} is said to reduce

X.
A %r*-increasing process is a ®,-adapted process A: T X ß' -» *R of class SDJ

such that for all co, A(-, w) is nondecreasing and ^4(0, w) = 0. If A is an SDJ lifting

of a, we say A is a <i&(-*-increasing lifting of a.

A <&,-martingale is a ^-adapted process M: T X ß1 -> *R such that {(M(t), %,) \

t E T} is an internal martingale and sup(, w) | M(t, co) | E *R. If, . . addition, M is

^-locally integrable then M is an 5-local martingale (with respect to {CS¡L}). We say

that M is a "S^-local martingale lifting of m if M is an 5-local martingale and an SDJ

lifting of m.

Finally, if X: T X ß - *R, let A(X)(r) = X(t + At) - X(t).    D
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The correspondence between the above nonstandard definitions and their stan-

dard counterparts is studied in [H.P.] and will be used in §5. For now we only need

the following simple result.

Theorem 2.3 [H.P., Theorem 5.2]. Let. {<$>,} be an internal filtration.

(a) If M is a 6A ¡-martingale and {Vn} is a sequence of % ¡stopping times such that

lim^oo °Vn = oo a.s. and \ M(Vn) \ is S-integrable, then M is SD.

(b) If M is an S-local martingale, then st(M) is an ^¡-local martingale.    D

We are ready to state the main lifting theorem.

Theorem 2.4. There is an internal filtration {%/}, a ÍB¡-local martingale lifting of'/?',

TV1, ¿z %-*-increasing lifting of a1, Ax, and a sequence of %¡-*-stopping times {Wx} that

satisfy the following conditions:

(2.2) Both Ax andN] are reduced by {Wx}, andAx(t + At) is %-adapted.

(2.3) For a.a. co iftx « t_2 E ns(T), °A/V'(/_,) ¥= 0 and °AA](t2j * 0 then t_2 < /,.

(2.4) There is a positive infinitesimal 8 and an infinite natural number y such that

8 < X\t, co) = N\t, co) + A\t, co) < y for all (t, co) in T X ilx.

Proof. See §5.    D

Note that Xx need not be SDJ since A1 and Ax may have jumps at infinitely close,

but distinct, times. Whenever this occurs, (2.3) implies that the jump in Ax takes

place first. As there were no additional conditions on the original internal filtration

{éE,1} we may, and shall, assume that 65, = éE,1.

We now enlarge our space as follows. Let (ß2, éE2, T*2) = (*[0, l]r,

*%([0, l])r, *mT), where m is Lebesgue measure on [0,1], and (*[0, l]r, *<S([0, l])r)

denotes the internal product space. Let éE2 be the internal a-algebra generated by the

coordinate mappings on ß2 up to and including /. Then define

(ß, â, P, &,) = (il] X il2, éE1 X â2, P1 X P2, &) X éE,2)

and let 77,: ß -» ß, be the projection map. The adapted Loeb space generated by

(ß, éE, P, éE,) is denoted by (ß, §", P, %). Integration with respect to Px and P is

denoted by Ex and E, respectively.

Lemma 2.5. (a) 77, is measure-preserving and <SS | S:X-measurable far all s > 0.

(b)  If </>:   ß'^[0, oo )   is  ÇF1 -measurable  then for  all s > 0,   E(^°ttx\^s) =

Ex(<p\%x)°ttx a.s.

Proof, (a) Since 3F, X % C <§ (see Anderson [2, Theorem 22]), 77, is measurable

and therefore is clearly measure-preserving. If A E fj\ then by Lemma 2.1 there is

an s « s and a B in éE] such that PX(AAB) = 0. Therefore P(ttx~x(A)A7tx~x(B)) = 0

and hence 77," \A) E % since 77," X(B) G éE£ C <$s.

(b) By truncating we may assume <p is bounded. Let $ be a bounded éE'-measurable

lifting of <j> (see Loeb [9]). By Lemma 2.1 there exists s « s such that

E(<p o 77, I %) = E(<t> o 77, j a(«J) = °£($ o „} l gj    a.s.,
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and

Ex(<t>\%x) ° irx = £'(«i>|o-((^))o77| = °£'(0|ffi])offl    a.s.

The result follows since the right sides of the above equalities are clearly the same.

D

Let x = xx ° 77,, n = nx ° 77, and a = ax ° 77,. The above lemma implies that n is

an ^-local martingale and that ((xx, ax), f;1) and ((x, a),®!.) are synonymous. In

particular, by Aldous [1, Theorem 19.6] a(t) is a predictable increasing process with

respect to {ÍF,}. It follows that x(t) is a nonnegative local submartingale with respect

to {ÍF,} and x = n + a is its Doob-Meyer decomposition. We also defined = Ax ° 77,,

N = N[ o 77, and X = Xx ° 77,. Clearly A, N and X satisfy the same properties as Ax,

Nx and Xx, only with éE, in place of éE1 and Wn = Wx ° 77, in place of Wx. Note also

that N(t) is an internal martingale with respect to the larger *-a-fields {éEj1 X éE2 11

E T}.

Fix p E [0,1], once and for all.

Notation 2.6. If co E il, we write co = (co1, co2) = (co1, (<o2)jG7-). Define </>: T X il -»

{-1,1} by

[-1        lfc02>/7,

and

<f>(/ co) = Í _1     tíu¡<hA(t- At,o>)(2(X(t- A/,co) + AA(t - At, o))))~\

{1        otherwise.

Let Z(t) = IIi=0 <p(s), and define M(t) = Z(t)X(t).    D

Hence | M(t) \= X(t) and M changes sign whenever <j> = -1. These added jumps

are weighted to counteract the increasing part of X, and hence make M an

éE,-martingale.

Lemma 2.7. M is an & ¡-martingale.

Proof. It is clear from its definition that M is an éE,-adapted process and

I M(t_) I = X(t) < y (by (2.4)). Note that

E(M(t + At) I éE,) = Z(t)E((X(t) + AN(t_) + AA(t))<p(t_ + At) | éE,)

= Z(t)((X(t_) + AA(t))E(<p(t + At) I éE,)

+ E(AN(t)<j>(t_ + At)\&,)),

because A(t + At) is éE,-measurable. Since N is an éE] X éE2-martingale and <p(t + At)

is éE,1 X (immeasurable, the last term becomes

7l(<í)(z; + A/)7l(AA(_í)|éí,1 XÉ?2)|éE,) =0.

An easy computation now implies

E(M(t + At)\&,) = Z(t)(X(t) + AA(t))(l - AA(t)(X({) + A^l(i))"1)

= Z(t)X(t) = M(t).    D



MARTINGALES WITH GIVEN ABSOLUTE VALUE 267

In order to apply Theorem 2.3 to obtain the required local martingale, we need the

following lemma:

Lemma 2.8. If U = Ux ° trx for some 'S1-measurable random variable Ux, then

P(3t E ns(T) 3t<*>U,    °X(t) > 0, 4>(t + At) = -1 and °AA(t) = 0) = 0.

Proof. It clearly suffices to show that P(Bn e) = 0 for each n in N and positive

infinitesimal e, where

Bne = (co | It < n such that \t- V\<e, X(t) >n~x,

<¡>(t + At) = -1 andA^l(/) < e}

and V = Vx ° ttx, for some éE1-measurable lifting of Ux, Vx. By Lemma 2.1 we have

P(B„Jo((ix X {4>,H2})) = °P(BnJâx X {<p,il2})    a.s.

2j *{\t_-V\<t, A/t(r)*e, X(r>>n'1}

XP(<p(t + At) = -1 I éE1 X {<f>, ß2})

<°2 Vh<«.ax<o<«>Mí)«/2
Z«n

= 0    a.s.

(the last line follows because A is of class SDJ and e « 0). The proof is completed by

taking expectations in the above.    D

Theorem 2.9. The process M is SD and m = st(Af) is an {^-local martingale such

that | m | and x are indistinguishable. Moreover, ((| m \, a), <5.) = ((jc1, ax), 'S}), where

a and ax are the increasing processes in the Doob-Meyer decompositions of\m\ and x{,

respectively. If xx is a submartingale, m is a martingale.

Proof. Since \M(Wn)\= X(Wn) is 5-integrable, M is SD by Theorem 2.3(a). We

claim that M is an S-local martingale. If °M(W„) ¥= m(°Wn) (m = st(M)),

then, since ° \M(Wn)\ = \m(°Wn)\ and °A(W„) = a(°Wn) a.s., with probability

one there is a positive infinitesimal / such that <p(Wn + t) = -I,

°X(W„ + t - At) = x(°W„) > 0, and °AA(Wn + t - At) = 0. Therefore

{°M(Wn) * m(°Wn)} C {3/ E ns(r) 3 t « Wn, °X(t) > 0,

(2.5)
<¡>(t + At) = -1 and °AA(t) = 0} U A

for some null set A. The previous lemma implies that °M(Wn) = m(°Wn) a.s. and

hence proves the claim. By Theorem 2.3(b), m is an {^J-local martingale, and

\m\ = \st(M)\= st(\M\) = x   a.s.

Lemma 2.5 implies that ((| m \, a), %) = ((xx, ax), 'S.1). If xx is a submartingale, then

so is I m | = x. From this and the fact that mis a local martingale, it follows easily

that m must be a martingale.    D
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3. The distribution of m. In this section we describe the finite-dimensional

distributions of m in terms of the law of (x, a). In order to facilitate the computa-

tions we will modify the definition of m by adding a positive infinitesimal to the

lifting N of n obtained in Theorem 2.4 (see Remark 3.8). A series of technical

lemmas precedes the proof of the main result (Theorem 3.11).

Notation 3.1. Let Q denote the internal a-algebra of internal subsets of T. If F:

T -> *R is an internal function, let vF denote the internal signed measure on (T, Q)

defined by vF({t}) = F(t + At) - F(t). If F: T X il -> *R is an internal stochastic

process, then vF denotes the internal random signed measure defined by the above.

D

The following two elementary results [H.P., Lemma 2.7 and Theorem 4.7(b)] are

frequently used.

Lemma 3.2. If F: T -> *R is an internal, nondecreasing function of class SD such

that F(t)^F(0) for all t « 0, and f=st(F), then for each B in ®([0, oo)),

L(vF)({tET\°iEB}) = ~jBdf.    D

Lemma 3.3. If X: T X il -» *Rd is an SD internal stochastic process then for each

t > Othereisat/ <=> t such that for almost all co ift « tandt ^ t_x then °X(t_) = st(X)(t).

□

To obtain a formula for the distribution of m, it is clear we need to examine

sgn(w(/)). The following result allows us to study sgn(m(/)) by means of the

internal process Z(t).

Lemma 3.4. For each />0 there is a /' » t such that with probability one,

m(t) = Z(t)x(t) for all t > / that satisfy /* /. If t = 0, we may take / = 0.

Proof. Since (M, X) is an SD lifting of (m, x), by Lemma 3.3 there is a /' «= /

such that °(M(t), X(t)) = (m(t), x(t)) for all t > / satisfying t « t and a.a. co.

Therefore for a.a. co if / > /' and t «< t, then

m(t) = °M(t) = Z(t)°X(t) = Z(t)x(t).

If t = 0 and x(0) = 0, then m(0) = Z(0)jc(0) = 0 a.s. If / = 0 and x(0) > 0, then

°X(t) > 0 for all t « 0 a.s. and therefore, by Lemma 2.7 (with U = 0), <¡>(t + At) = 1

for all infinitesimal / in T a.s. It follows that for a.a. co and for all t « 0,

m(0) = Z(t)x(0) = Z(0)jc(0).    D

Lemma 3.5.

L(vA)({t_ E ns(T) | °X(t_) ¥= x(°f ) or °AA(t) * Aa(°t)}) = 0   a.s.

Proof. Let {F¡ | z E N} be a sequence of éE,-stopping times such that

{tEns(T)\°\X(t)-X(t_-At)\>0} = {F,|°F^oo}    a.s.
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(such a sequence clearly exists since X is the sum of two SDJ processes). Therefore,

{tEns(T)\°X(t)^x(0ty)} E (J    fi ([v„Vl + m-x) n T)    a.s.
iEN   m£N

Moreover by (2.3) we have °A(V¡) = a(°V¡) a.s. and, hence,

L(vA)(U    n([v„V, + m-x)nT)]
V îêN   mGN '

00

<2    Um L(vA)([v,,V, +m'x)r)T)=0   a.s.
i= 1

Thus it follows that L(vA)({t E ns(T) \ °X(t) ¥= x(°f )}) = 0 a.s. A similar argu-

ment shows that L(vA\{{ E ns(T) \ °AA(t) ¥= Aa(°t)}) = 0 a.s., and the proof is

complete.    D

Let

ad(t) = f'l(Aa(s)>0)da(s)    and   ac(t) = f'l(Aa(s) = 0) da(s)
Jo Jo

be the pure jump and continuous parts of a, respectively. A corresponding decom-

position of A is given by the following:

Lemma 3.6. For some H in *N - N, Ae(t) = 2s<,AA(s)I(AA(s) < H~x) and

Ad = A — Ac are SDJ liftings of ac and ad, respectively.    □

The simple proof is left for the reader. Fix H and define Ac and Ad as in the above.

Let {/•, | z E N} be an enumeration of the nonnegative rationals and choose /•, ~ /-,

(r¡ E T) such that m(r¡) = Z(r¡)x(r¡) and °A(t¡) = a(r¡) a.s. The existence of r¡

follows from Lemmas 3.3 and 3.4. Since ,4(0) = a(0) = 0 we may let r, = 0 if /*, = 0.

Lemma 3.7. There is a K in *N - N such that KH~X « 0, and for all (i, j) with

n < rp

°(l(r,^s<rj)(K-x + X(s) + AA(s ))~l dvA,

(3.1)
= /I(r¡ < s < r)x(s)    dac(s)    a.s.

and

°fl(r,^s <r_j)(K-x + X(s) + AA(s_)Y'dvA,

(3-2)
= fl(ri<s^rj)(x(s~) + Aa(s))   ' dad(s)   a.s.
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Proof. If r¡ < rJ we claim that (3.1) and (3.2) hold for K in N. Indeed if K E N,

°fl(_r,< s < r,)(lTl + X(s_) + AA(s_)yl dvA,

= fl(ri<s<rJ)(K-x + x(°s_- ) + Aa(°s))_1 dL(vÁ¡)   a.s.

(Lemma 3.5)

= jKri<0î<rj)(K~i + *(°D + Aa(°s_))~X dL(vA„)    a.s.

(since M(_rJ = a(rk) a.s.)

= |/(r, < s < /) )(7r' + x(j- ) + Aa(s))~l dad(s)   a.s.

(Lemmas 3.2 and 3.6).

The same result holds with Ac and ac in place of Ad and ad, and hence the claim is

proved. Let

X^K = aTctm^fl(ri<s_<rJ)(K-] + X(s_) + AA(s_)y'dv^,

XfJtK = arctan(/7(r, ^ s<r/){lT1 + X(s_) + AA(s_)Y'dvA^,

and let X¡, and Xfj be uniformly bounded liftings of

arctanl j l(r¡< s < ry)x(s)   ' dac(s)\    and

arctanijl(rl<s<rJ)(x(s-) + Aa(s))~] dad(s)\,

respectively. Since (3.1) and (3.2) hold for K in N, the monotone convergence

theorem implies that

lim  °E(\ XlJtK - Xfj | +1 XdjK - Xfj |) = 0,
K—oo

whenever r¡ < r•. Therefore for each n in N there is a Kn in *N — N such that

whenever K E *N — N satisfies K < Kn,

max E(\ XfJiK - Xfj | +1 XfJtK ~ Xfd |) < 2~".
i,j<n

Extend {Kn \ n E N} internally to *N such that Kn > n. Let K = (min„^yK„) A 771/2

for some y in *N — N. Then K is the required number.    D

Remark 3.8. If A1 and A1 are replaced by A1 + AT ' and Xx + K x, respectively

(A1 remains unchanged), then the conditions of Theorem 2.4 remain satisfied. Thus

we may, and shall, assume that

(3.3) X(t)~lH'x~0    for all (/,«),
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°jl(r¡<s<ri)(X(s) + AA(s_))  xdvA<

(3.4)
= / 7(r, < s =£ rj)x(s)    dac(s)    for all r¡ < ry a.s.,

and

0fl(Ti < l<rj)(X(s_) + AA(s_)YXdvAJ

(3-5) , _,     J
= fl(ri<s<rj)(x(s-) + Aa(s))    dad(s)    for all r, </■ a.s.    D

Lemma 3.9. Let F: T -> *R /3e a/z SW nondecreasing internal function, f = st(F)

and let tx < t_2 ns(T) such that for i = 1,2, °F(tJ = f(%). If G: T - *[ 0, oo) and g:

[0, oo) -» [0, oo) satisfy °G(s) = g(°s_), L(vF)-a.s. and

°fl(h < 3 < h)G(s) dvF = fl(°t_x < s < °t_2)g(s) df(s) < oo,

then 77(f) = jl(tx < s < M /2)G(s) c/zv z's a/z ST)./ ////-//ig o/

h(t) = fl(°tx<s<t/\°t2)g(s)df(s).

Proof. If /, < t < t2 and °F(0 = f(°t), then

°/'(?. < 5 < ?)G(i) dvF>fl(t_x < s_ < t)g(°s_)L(vF)

= jl(0tx<°s_<°t)g(°s_)L(vF)

= fl(°tx < s < °/)f(j) df(s)    (Lemma 3.2).

A similar argument shows that

°jl(t < I < h)G(s) dvF^fl(°t < s < °t_2)g(s) df(s).

Since the sum of the above inequalities leads to an equality, it follows that

°H(t) = h(°t). Similarly, if °F(t) =f(°f) and /, < / *£ t2, then °H(t) = h(°f).

Note also that if / 3* t2 or t < tx then °H(t) = h(°t). The result follows because F is

SDJ and f = st(F).    D

Lemma 3.10. Suppose f is a nondecreasing pure jump function in D(R), (i.e.,

f(t) = 2js;, Af(s)) and F: T -» *Ris a nondecreasing SDJ lifting of f. Let h:

[0, oo) -» R be Lipschitz continuous and satisfy h(0) = 0. If g(t) = 2s^,h(Af(s)) and

G(t) = 2i<Lh(AF(sJ), then °F(t)=f(°t) implies °G(t) = g(°t).
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Proof. Fix t » 0 and / « / such that °F(t) = f(t). Let {/, | z E 7}

= {s < 11 Af(s) > 0} and for each t¡ choose /, « /, such that °AF(t¡) = Af(t¡).

Since °F(t) = f(°t), it follows that {/,. | z E 7} E [0, /). If | h(x) \< c\ x \, then

limsup °2l(s_ Ê {tx,...,t_n})\h(AF(s_))\
n-*oc      s<[

<c limsup °2l(s_ E {tx,...,t_n})AF(s)
n->co      s<t_

= c limsup (/(/)- 2A/(i,)] =0.
n — oo     \ í=l /

Therefore

°G(i)=lim   2 °/z(AF(/,)) = lim   2 *(*/(',)) = *(')•    □
«-oo   , = 1 «-oo   i=,

We are finally ready for the main result of this section.

Theorem 3.11. Suppose {B0,...,By} E cS>((0,oo)),  {ex,...,ey} E {-1,1}, e0 E

{-1,0,1}, and 0 = t0 < tx < ■ • • < t„. Then E(m(0)\a,x) = (2p - 1)jc(0) a.s. and

P((m(t0),...,m(tn)) Ee0B0X ■ ■ ■ Xe„Bn)

= (pl(e0 = 1) + (1 -p)l(e0 = -1) + f(e0 = 0))

XE\l((x(t0),...,x(tn))E\e0\B0XBxX---XBn)
(3.6) \

X2-"ñ 11 +ê,_1ê,expi-/'i x(sfl dac(s) j

X      II     (l-Wi-J + Aaii))-^)))),
í,-i<í«, //

where

e, ifi>0ore¡^0,

2p — 1     if i = 0 and e0 = 0.

Proof. By a routine limiting argument it suffices to prove the result when /,,...,/„

are rationals. By the definition of {/-,}, and (3.4) and (3.5), there are points

0 = t0< ■■<{„ such that °t_¡ = t¡, m(t¡) = Z(/,)x(/,) a.s., °A(t¡) = a(t¡) a.s.,

°fl(t,<s_<t¡ + x)(X(s_) + AA(s_))-]dvAÍ

(3.7)

= fl(ti<s<ti+x)x(syldac(s)    a.s.,
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and

°[l(ti^s<t,+ x)(X(s) + AA(sjyid^

(3.8) J

= fl(t, < s < fl+1)(*(*~ ) + Afl(i))   ' da"(s)    a.s.

Then

7>((m(i0),.. .,/«(/„)) E e07?0 X • ■ • Xe„Bn)

= E(l((Z(0)x(0),x(tx),...,x(tn))Ee0B0XBxX---XBn)

(3.9)
X/((Z(/,),...,Z(/n_,))=(e,,...,c„_,))

XP(z(t„) = e„\L{&xX&U)).

We claim that

p(z(í„) = e„|L(A1X6E¿.i))

(3.10) = |(l +e„Z(/„_,)exp{-^" xi^f1^)}

X      II     (l -(*(*")+ Aa(i)r,Afl(s))l
r„_,<.s«!f„ /

The definition of Z implies that

7T(z(/„)|é¡"xéE2 ) = Z(i„.x)E(     Il     *(*)|éB'xéB¿ ,)

(3.11)
= Z(ílI_I)     n     (l-(^) + A^))-'A^)),

where we have used the fact that {<p(s) \ t„_, < s < t,,} are conditionally indepen-

dent given éE' X é£2   .

To prove (3.10), assume first that

/(*„_, <s^t„)(x(s-) + Aa(s)f]da(s) = oo.

Then (3.7) and (3.8) imply that for a.a. co,

°2     (X(s) + AA(s_)y]AA(s) = oo

and, therefore by (3.11), °E(Z(t„) | éE' X éE2  / = 0 a.s. This implies that

P(z(tn) = ey\L{&x X «¿J) = °P{z(t_n) = e„\&x X éE2 J    a.s.

(Lemma 2.1)

= 1/2   a.s.

Clearly the right side of (3.10) is also {- by assumption, and the claim is proved in

this case.
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Assume now that

fl(tn_x<s<t„)(x(s-) + Aa(s)ylda(s)<oo.

lf_°(X(s) + AA(s)rxAA(s) = 1 for some s_ in [/„_„ t„), then by (3.11),

°E(Z(tn) | éE1 X éE2 f = 0 a.s. and therefore P(Z(t„) = e„ \ L(&x X éE2 :)) = { a.s.,

as before. On the other hand, (3.7), (3.8) and Lemma 3.9 imply that for a.a. co,

°5 > /„_, and (x(°s~) + Aa(°s))~xAa(°s) = 1. This implies that the right side of

(3.10) is also {. Hence, we may assume that

°max   (X(s) + AA(s)yXAA(s) = y(u) < 1.

From (3.11) we obtain

iog(E(z(tn)/z(t_^x)\âxx&l J)

=      2      log(l ~(X(s_) +AA(s_)y'AA<(s_))

(3.12) -     -  -
+      2      log(l~ (X(s) + AA(s_)ylAAd(s_))

= 2, + 22-

By (3.7), (3.8) and Lemma 3.9 we see that for a.a. co satisfying the above assump-

tions, the hypotheses of Lemma 3.10 are satisfied, where

h(x) = log(l-(xV(-y(ic)))Ay(u)),

/(') = jl(tn-\ < * < t„ A t)(x(s- ) + Aa(s)yldad(s),

F(t)=fl(ín-i^s<tnAt)(X(s_) + AA(sjyXdvAlt.

Therefore Lemma 3.10 implies that for a.a. co satisfying the above conditions,

°22 =      °2     h((X(s) + AA(s_)yiAAd(s))
í„-i*í<í/i

(3'13) =      2      log(l-(x(s~) + Aa(s)y{Aa(s)).

For 2,, let log(l - z) = -z - z28(z) for | z |< 1 and note that

°2, = -     °2    (X(s_) + AA(s_)ylAAc(s_)
i„_l«5</„

-     °2     (X(s_) + AA(s_)y2(AA<(s_))2

xe((X(s_) + AA(s_)y'AAc(s)).
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Since AAc(s) < H~l, we may use (3.3) and (3.7) to bound the latter summation a.s.

in absolute value by

°0(O)°(    max    ( X(s) + AA(s))~*AAc(s)\
V «„-,<«<*„       " " /

X ('" (x(s~) + Aa(s)yXdac(s) = 0.
J'„-i

Therefore by (3.7),

(3.14) °2,= - ('" x(sy]dac(s)    a.s.

Substitute (3.13) and (3.14) into (3.12) to see that

E(z(t_n)\L{&x Xfi2 J) = °7J(z(f„)|6E' XéE2  J    a.s.

= Z(t„_x)expl-f" x(sy]da<(s)

X       II     (l-(x(s-) + Aa(s)yiAa(s)).
'„-\<s^t„

Thus (3.10) follows immediately and the claim is proved. Using (3.10) inductively in

(3.9) we obtain

P((m(t0),...,m(tn)) E e07?0 X ■■ • XenBn)

= EÍl((Z(0)x(0),x(tx),...,x(tn))EeoBoXBxX--XBn)

X2-"ñ    1 + <_1e,'exp{-jf'í x(s)-*dac(s)}

x    II   (l-WrJ + A^))-^)))),

where e¡ = e¡ if z > 0 and e'0 = Z(0). Since Z(0) is independent of (a, x) and

7>(Z(0) = 1) = p = 1 - P(Z(0) = -1), (3.6) follows immediately. Finally

E(m(0) | a, x) = (2p - l)x(0) a.s. because m(0) = Z(0)x(0) (Lemma 3.4).    D

Remark 3.12. Note that if Bx,...,Bn are any Borel subsets of R, and 0 < /, <

• • ■ <t„, then P((m(tx),.. .,m(tn)) E Bx X • ■ ■ X Bn) is a linear combination of the

probabilities obtained in the above theorem.    D

It is now easy to prove Theorem 1.2. We give the proof in the local submartingale

setting.

Proof of Theorem 1.2. If y(t) > 0 is a local submartingale on (A', §, Q, (?,) with

Doob-Meyer decomposition y = I + b (b is the increasing process), let (ß1, éE', 7>')

= (*X,*§,*&), and for fin T= {kAt\k E *N0}±let &] = *§,. Let (ß\ Ç', P\%x)

be the adapted Loeb space generated by (ß\ éE', Px, éE]). Let xx = st(*y), «' = st(*/)

and a' = st(*b). Then by [H.P., Remark 10.10], (xx, ax) is a well-defined f,'-adapted

process and satisfies ((xx, ax), 'S.1) = ((y, b), §.). Moreover, the same result shows
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that /z' is an Ví,1 -local martingale and, by Aldous [1, Theorem 19.6], a1 is an

increasing Vf,1 -predictable process. Hence xx(t) is a nonnegative local submartingale

on (ß1, 'S1, P\ Vf') with Doob-Meyer decomposition xx = nx + a]. Construct x and

m on (il, Vf, P, vT,) as in §2. By Theorem 2.9 m is a local martingale and satisfies

(3.15) ((\m\,a),^.)^((xx,ax),'S.x)=((y,b),Q.),

where a is the increasing process in the Doob-Meyer decomposition of | m \. Finally

(1.2) and (1.3) follow from Theorem 3.11 by setting// = { and noting that (3.15)

implies that (y, b) and (x, a) have the same distribution.    D

4. An additional property of m. One could study several other properties of m, such

as its jump structure across zero or its quadratic variation, by examining the

corresponding internal properties of M. Instead of this we establish a key fact about

m (Corollary 4.4) which is shown in [12] to uniquely determine the probabilistic

behaviour of the above properties when m is any local martingale satisfying (1.1). In

fact, in [12] we show that under an additional hypothesis on x (which is readily

checked and is satisfied in most cases of interest) any m satisfying the conditions

((4.4) and (4.5)) of Corollary 4.4, as well as (1.1) and (1.2), must also satisfy (1.3) and

hence is unique in law. Moreover in many cases of interest the conditions (4.4) and

(4.5) are always satisfied (see §4 of [12]).

The notation is that introduced in §2.

Lemma 4.1. Ify(t, co) = yx(t, ttx(u)) for some process y] on (ß1, V7', Px) with sample

paths in D(R), then

P(3t E ns(T) such that <f>(f + Af) = -1,

(4.1)
°X(t_) >0, °A^(f) = OandAy(°t) ¥= 0) = 0

and

P(3t e[0,oo) such that m(r )m(t) < 0,

(4.2)
Aa(t) = 0andAy(t) ¥= 0) = 0.

Proof. There is a sequence of VT'-measurable random variables {£/„'} such that

{/1 A^'(f ) ¥= 0} E {£/„'} a.s. The probability in (4.1) is bounded above by

7>    U {3f E ns(T) such that t ~ U„ = U,j ° m,
\ n=\

4>(t + At) = -l,°X(t)>0,°AA(t) = 0}   ,

which is zero by Lemma 2.8. If m(t~ )m(t) < 0 then clearly cf>(f + Af) = -1 for

some (*i, Moreover (2.3) implies that °X(t) > x(t~ ) A x(t) > 0 a.s. (the excep-

tional null set is independent of /) and hence (4.2) is an immediate consequence of

(4.1).    D
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Recall that if U is a stopping time with respect to a filtration {VT, | f > 0}, then VT^

is the a-field generated by {A n {f < U} \ A E VT,, f > 0} U v70.

Lemma 4.2. Lei (ß, f, P, vT,) ¿>e f/zc? adapted Loeb space generated by (il, éE, P, &),

where {éE,} is some internal filtration.

(a) 77ze/z U: il -» [0, oo) is an ^-stopping time if and only if it has an tt-lifting (see

2.2).

(b) If V is an (¿.¿-lifting of U and U>0 a.s., then §/ C a(&v) V vX, w/zere

éE K = {^1 E S. | A n {F = f} Eh, for all t in T} and VX « f/ze class of P-null sets.

Proof. The proof of (a) is in [H.P.] (Theorem 4.7(a)).

For (b), fix f > 0 and A in vT,. By Lemma 2.1 there is a f « t and 5 E éE, such that

P(AAB) = 0. Since
OO

A n {f < ¿7} = U £ n {f + m"x < F}    a.s.,
«!=1

and Tin [t + m~x < F} E ¿E K, it follows that ,4 n {f < U} E a(tv) V VX. If f = 0

we see that §5, E a(éÈK) V vX and hence VT^- E a(éE^) V VX.    D

Theorem 4.3. 7/

(4.3) 7>(3i3*0 3 x(r) >0,x(t) = 0 and Aa(t) > 0) =0,

then there is a sequence of disjoint predictable stopping times {T¡} such that for each

local martingaleyx on (ß1, VT1, P],'Slx)we have

(4.4) {t\Ay(t)l(m(r)m(t)<0)¥=0} E{f}    a.s.

and

(4.5) E(Ay(Ti)l(m(T-)m(Ti)<0,Ti<oo)\<STr)=0   a.s.

for all i in N, where y(t, u) = yx(t, 7r,co).

Proof. Let {7/} be a sequence of disjoint {vT,1}-predictable stopping times such

that {f | Aa'(f ) ¥= 0} = {7]' | Tx < oo, i E N} a.s., and let 7) = Tx ° w.. Clearly {Tj}

is a sequence of {V?,} -predictable times that satisfies (4.4) (by (4.2)). For z fixed, let U

and Y be éE'-measurable liftings of Tx and Aax(Tx)I(Tx < oo), respectively, and

define

F„" =min{f > [/-«-'||A^(i-Af) - r|<«-1}

(min 0 = +oo). By saturation there is an éE'-measurable F' = F1: ß' -» 7" U {oo}

(°y = oo) such that °VX = T> a.s. and °AAX(VX - At) = Aa\Tx) a.s. on {Tx < oo}.

Let V,■= F' o 77, and F¡' = (F,. - Aí)+ .

We claim that

l(m(T,r )m(Tt) <0,Ti<oo) = l(x(T~ ) > 0, <p(V,) = -l,T¡<oo)    a.s.

If m(T~ )m(T¡) < 0 and T¡■< oo then w.p. 1, x(Tf ) > 0 and c/>(f) = -1 for some

t « 7;. Iff * F, then w.p. 1, °A^(f - Af) = 0 (recalU is 57)7 and °Ai4(K,) = Acz(7¡)

a.s. on {7; < oo}), °X(t - At) > 0 (by (2.3) since x(T~ ) A x(T¡) > 0) and <¡>(t) =

-1. By (4.2) this occurs with zero probability and hence 4>(V¡) = -1 (a.s.). Con-

versely if x(Tf ) > 0, <p(Vj) = -1 and T¡ < oo, then by (4.3) jc(7]) > 0 a.s. and
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therefore (2.3) implies that °X(t) > 0 for all t « 7) a.s. Use (4.1) with y = a to see

that w.p. 1, <p(t) = 1 for all f « 7¡ such that f ^ V„ and therefore for all f in (^ - e,

V¡ + e) — {V¡} for some real positive e(co). Therefore m(T/ )m(T¡) < 0 a.s. (by the

definition of m ) and the claim is proven.

Let è, = éE' X é?,2 and note that {V[ = t) E &0 and, by Lemma 4.2, a(tv.) V vX

Z) vTr , where VX is the class of all P-null sets. Therefore by the above result and

Lemma 2.1,

E(Ay(T,)l(m(T,r )m(T¡) <0,T¡<oo)\ <ST; )

= E(Ay(T,)l(x(Tf ) > 0, T, < oo)°P(<t>(V,) = -1 | &y;) | 9^ )    a.s.

By considering separately the sets {Vl = s}, it is clear that on {V¡ E T — {0}},

¥(<?(¥,) = -1 \tv.) = A^(F; - At)(2(X(Vt - At) + AA(V: - At)))'1.

Thus we obtain

E(Ay(T,)l(m(T- )m(T,) < 0, 7) < oo) | %- )

= E(Ay(Tl)l(x(T~ ) > 0, Tj < oo)Aa(7;.)

x(2(x(T-) + Aa(T,))y]\'ST:)    a.s.

(since °X(V, - At) = x(T~ ) a.s. by (2.3))

= l(x(T- )>0,T,< oo)Aa(T,)(2(x(T- ) + Aa(T,))y] E(Ay(f) | %- )

= 0    a.s.

(the last because 7¡ is predictable).    D

The following corollary is now immediate from the previous result and Lemma

2.5. Recall that n(t) is the local martingale part of the Doob-Meyer decomposition

of x.

Corollary 4.4. Assume (4.3) holds. If<¡>: D(R2) -> R is bounded and measurable let

Lç(t) be a right continuous version of E(<p(x, a) ['S,). Then there is a sequence of

predictable slopping times {7]} with disjoint graphs such that (4.4) and (4.5) hold

whenever y E {7.^, | c/> bounded measurable} U {n}.    D

5. Proof of Theorem 2.4. Our setting is that described at the beginning of §2

except that the superscript ' is dropped for notational convenience. The following

lifting theorem is proved in [HP.] (Theorem 5.6, Remark 5.7(c), and Remark 4.5(a)).

Theorem 5.1. Ify(t) is a local martingale with respect to {Vf,} and y is reduced by

{Un} (i.e. y(Un A t) is a uniformly integrable martingale and Un increase to oo a.s.),

then there is an internal filtration {'S,}, a sequence of % ¡-stopping times {Wy} and a

vB,-/occj/ martingale lifting ofy, Y, such that {Wy} reduces Y and °Wn = U„ a.s.

(b) Ifb(t) is a right-continuous 'S-adapted process with nondecreasing sample paths,

such that b(0) = 0 a.s., then b has a %,-*-increasing lifting for every internal filtration

{%}.    D
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We will also use the fact that if F: T -* *R is an internal function then F is SDJ if

and only if F is near-standard in the Skorokhod 7, topology on D(R), and the

mapping st defined in §2 is the standard part map on this class of functions (see

[H.P., Theorem 2.6]).

Recall that a is the increasing predictable process in the Doob-Meyer decomposi-

tion of the local submartingale x. The following lemma will be used to obtain a

lifting of a satisfying (2.2) and (2.3).

Lemma 5.2. If {<$,} is an internal filtration and {Vn} is a sequence of % ¡stopping

times, then a(t) has a iß,-*-increasing lifting A(t) such that A(t + At) is V&¡-adapted

and °A(Vn) = a(°Vn) a.s'. on {°Vn < oo} for all n.

Proof. Extend [Vy\nE N} internally to *N and let Y(t) = 2^=, 2~"7(f > F„),

where ß E *N — N. Let ad(t) = 2Jí;,Aa(í) and a1 = a — ad. There is a disjoint

sequence of positive predictable stopping times {Ty} that covers the jumps of a, and

for each n there is a sequence of stopping times {T£\m E N} that announces Tn. If

V£ is a ÇB,-lifting of Tf¡¡, a routine saturation argument shows the existence of a

^-stopping time Vy\n) (y(n) E *N - N) such that °Vy"(n) = T„ a.s. and °Y(Vy"(n)) =

st( Y)(Ty ) a.s. Since Aa(Tn) is v7r- -measurable it has a nonnegative % v„ -measurable

lifting A" by Lemma 4.2. Let

m m

Am(i) =  2 A"l(t> V;(H))    and   am(t) =  2 Aa(Tn)I(t> Tn).
n=\ n    1

If Ad is a <$,-*-increasing lifting of ad (see Theorem 5.1) and p denotes a metric

inducing the Skorokhod Jx topology on D(R), then, since st(Am) = am a.s., Theorem

2.6 in [H.P.] implies that

lim  °p(Am, Ad) =  lim p(am,ad) = 0   a.s.
m -* oo m -* oo

Extend {(Am, V™m), A"') \ m E N} internally to *N and select a in *N - N such

that Aa(t + At) is itj,-adapted, Aa(t, co) is nondecreasing on T and is zero at t = 0

for all co, AAa(V™m)) = Am for m « a, and °p(Aa, Ad) = 0. The last condition and

Theorem 2.6 in [H.P.] imply that Aa is an SDJ lifting of ad. If Ac is a ®,-*-increasing

lifting of a1 then the continuity of a1 implies that °Ac(t) = ac(°t) for all f in ns(T)

a.s. Therefore A(t) = Al((t — Af)+) + ^4a(f) is a ®,-*-increasing lifting of a and

A(t + At) is clearly Vl,-adapted. Suppose °A(Vm) ¥= a(°Vm) and °Vm < oo. Then w.p.

1, Aa(°Vm) > 0 and therefore °Vm = Tn for some n. Since A is SDJ and °AA(Vy\n))

= °A" = Aa(Tn) > 0 a.s., it follows that Vm < Vy"(n) a.s. This implies that °Y(Vy\n))

> °Y(Vm) > st(Y)(T~ ) + 2~m. Recalling that °Y(Vy"(n)) = st(Y)(Ty ) a.s., we see

that our assumption can only hold on a null set, that is °A(Vm) = a(°Vm) a.s. on

{°Vm < oo} for all m, as required.    D

Lemma 5.3. If {<$,} is an internal filtration and A is a vft,-*-increasing lifting of a and

{Vm | m E N} is a sequence of % ¡-stopping times such that lim,,,^^ °Vm = oo a.s.,

E(a(°Vm)) < oo and °A(VJ = a(°VJ a.s., then for some y in *N - N, (A A y)(Vm)

is S-integrable far all m in N.
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Proof. If Ym is an S-integrable lifting of a(°Vm), then for all n in N,

(5.1) E(max\A(Vm)An-YmAn\)<2-".
«j<« '

Therefore (5.1) holds when n is replaced by some y in *N — N and the result follows.

D

Proof of Theorem 2.4. Let {Uy} be a sequence of finite stopping times increasing

to oo a.s. such that E(a(Un)) < oo and n(Un A f ) is a uniformly integrable martingale.

By Theorem 5.1  there is an internal filtration {$,}, a sequence of <S,-stopping

times {Wy}, and a Vl^-local martingale lifting of n, Nx, such that {Wy} reduces Nx

and  °Wn = U„  a.s.  Let   {W¡¡}   be a  sequence of vTJ,-stopping times  such  that

{I | ° | AA,(f - Af) |> 0} E {Wy} a.s. and let Ax be the ^-"-increasing lifting of a

obtained in Lemma 5.2 with {Vy} = {Wy} U {Wy}. Since for a.a. co, °W'n < oo

implies °Ax(W'n) = a(°W¿), clearly Ax and A, satisfy (2.3). Note that E(a(°Wn)) =

E(a(Un)) < oo. Therefore Lemma 5.3 allows us to assume that {Wy} reduces Ax and

that sup,,¡u)Ax(t, co) E *R, by replacing Ax with Ax A y for some y in *N — N. If

Xx = Nx + Ax, then Xx is an SD lifting of x and since Nx and Ax satisfy (2.3),

°Xx(t) > 0 for all f in ns(T) a.s. Choose a positive infinitesimal 8 such that

Xx(t) + 8 > 0 for all t in ns(T) a.s. and let X(t) = (Xx(t) + 8)+ +8. Then

AX(t) = l(Xx(t) + 8^0)(AXx(t) + (Xx(t_ + At) + 8)~)

+ l(Xx(t) + 8<0)(Xx(t + At) + 8)+ ,

and therefore,

X(t) = (X(0) + 8)+ +8 + (Nx(t) - A\(0)) + N2(t_)

(5-2) t ,
+ Jl(s<t, Xx(s_) + 8 > 0) dvA¡ +A2(t),

where

A2(t) = 2 l(Xx(s_) +8^ 0)(Xx(s + At) + S)~
s<[

+ l(Xx(s) + 8 < 0)(Xx(s + At) + 8) +

and

N2(í)= - ^l(Xx(s_) + 8<0)ANx(s_).
s<L

The choice of 8 implies A2(t) = N2(t_) = 0 for all t in ns(T) a.s. By (5.2) {Wy}

reduces N2 + A2 since it reduces the other terms in (5.2). Since N2 is an internal

martingale, and since we may assume Wn<y for some y in *N — N (replace Wn by

Wn A y), it follows that

°E(\ HK) I) = 2°7l(A2+ (Wn)) ̂  2°E(| N2(Wn) + A2(W„) |)

= 2E(° \N2(W„) + A2(W„) |)       ({Wy} reduces A2 + A2)

= 0.

Therefore {Wy} reduces A2 and hence also A2. If A{({) = 2ä<, £'(A^2(j) | %s), then

E(A^(Wn)) = E(A2(Wn)) * 0. Hence, A$(t) « 0 for all f ïn"ns(T) a.¡. and Ap2 is
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reduced by {Wy}. Define

N(t_) =(XX(0) + 8)+ +8 + Nx(t_) - 7V,(0) + N2(t) + A2(t) - AÇ(t)

and

A(t) = jl(s < t, Xx(s_) + 0 3=0) dvA¡ + AP(t_).

Then {Wn} reduces N and A, A(t + At) is ^-adapted, and for a.a. co, N(t_) « Nx(t_)

and A(t)^Ax(t) for all f in ns(T). It follows that (X, A, N, {Wy}) satisfies the

required conditions. (Note that X satisfies (2.4) since sup(, u) | Xx(t_, co) | E *R.)    D

Added in proof. Recently Hoover and Keisler [15] have shown that if x is a

(local) submartingale defined on an adapted Loeb space (ß, VT, P, 'S,), rich enough to

support an VT,-Brownian motion then there is a (local) martingale, m, such that

| m | = x a.s. That is, there is no need to enlarge such a Loeb space. They use our

results in their proof.
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