Extensions for AF $C^{\ast }$ algebras and dimension groups
HTML articles powered by AMS MathViewer
- by David Handelman
- Trans. Amer. Math. Soc. 271 (1982), 537-573
- DOI: https://doi.org/10.1090/S0002-9947-1982-0654850-0
- PDF | Request permission
Abstract:
Let $A$, $C$ be approximately finite dimensional $({\text {AF)}} {C^{\ast }}$ algebras, with $A$ nonunital and $C$ unital; suppose that either (i) $A$ is the algebra of compact operators, or (ii) both $A$, $C$ are simple. The classification of extensions of $A$ by $C$ is studied here, by means of Elliottโs dimension groups. In case (i), the weak Ext group of $C$ is shown to be ${\operatorname {Ext} _{\mathbf {Z}}}({K_0}(C), {\mathbf {Z}})$, and the strong Ext group is an extension of a cyclic group by the weak Ext group; conditions under which either Ext group is trivial are determined. In case (ii), there is an unnatural and complicated group structure on the classes of extensions when $A$ has only finitely many pure finite traces (and somewhat more generally).References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271, DOI 10.1007/978-3-642-65009-3
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of $C^*$-algebras and $K$-homology, Ann. of Math. (2) 105 (1977), no.ย 2, 265โ324. MR 458196, DOI 10.2307/1970999
- Edward G. Effros and Jonathan Rosenberg, $C^{\ast }$-algebras with approximately inner flip, Pacific J. Math. 77 (1978), no.ย 2, 417โ443. MR 510932, DOI 10.2140/pjm.1978.77.417
- Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations, Amer. J. Math. 102 (1980), no.ย 2, 385โ407. MR 564479, DOI 10.2307/2374244
- George A. Elliott, On lifting and extending derivations of approximately finite-dimensional $C^{\ast }$-algebras, J. Functional Analysis 17 (1974), 395โ408. MR 0355616, DOI 10.1016/0022-1236(74)90049-4
- George A. Elliott, Automorphisms determined by multipliers on ideals of a $C^*$-algebra, J. Functional Analysis 23 (1976), no.ย 1, 1โ10. MR 0440372, DOI 10.1016/0022-1236(76)90054-9
- George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra 38 (1976), no.ย 1, 29โ44. MR 397420, DOI 10.1016/0021-8693(76)90242-8
- K. R. Goodearl, von Neumann regular rings, Monographs and Studies in Mathematics, vol. 4, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979. MR 533669
- K. R. Goodearl, Completions of regular rings, Math. Ann. 220 (1976), no.ย 3, 229โ252. MR 409542, DOI 10.1007/BF01431094
- K. R. Goodearl and D. Handelman, Rank functions and $K_{O}$ of regular rings, J. Pure Appl. Algebra 7 (1976), no.ย 2, 195โ216. MR 389965, DOI 10.1016/0022-4049(76)90032-3
- K. R. Goodearl and D. E. Handelman, Metric completions of partially ordered abelian groups, Indiana Univ. Math. J. 29 (1980), no.ย 6, 861โ895. MR 589651, DOI 10.1512/iumj.1980.29.29060
- David Handelman, $K_{0}$ of von Neumann and AF $C^{\ast }$ algebras, Quart. J. Math. Oxford Ser. (2) 29 (1978), no.ย 116, 427โ441. MR 517736, DOI 10.1093/qmath/29.4.427 โ, Free rank $n + 1$ dense subgroups of ${{\mathbf {R}}^n}$, J. Funct. Anal, (to appear). M. Pimsner and S. Popa, On the Ext group of an $AF$ algebra (to appear). โ, On the Ext group of $UHF$ algebras (to appear).
- Edward G. Effros, Dimensions and $C^{\ast }$-algebras, CBMS Regional Conference Series in Mathematics, vol. 46, Conference Board of the Mathematical Sciences, Washington, D.C., 1981. MR 623762, DOI 10.1090/cbms/046
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 271 (1982), 537-573
- MSC: Primary 46L05; Secondary 06F20, 16A56, 46M20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0654850-0
- MathSciNet review: 654850