Singular elliptic operators of second order with purely discrete spectra
HTML articles powered by AMS MathViewer
- by Roger T. Lewis
- Trans. Amer. Math. Soc. 271 (1982), 653-666
- DOI: https://doi.org/10.1090/S0002-9947-1982-0654855-X
- PDF | Request permission
Abstract:
The Friedrichs extension of a second order singular elliptic operator is considered on a weighted $\mathcal {L}_w^2(\Omega )$ space. The region $\Omega$ is not necessarily bounded. Necessary conditions and sufficient conditions on the coefficients that will insure a discrete spectrum are given with a certain degree of sharpness achieved. The boundary conditions include the Dirichlet, Neumann, and mixed Dirichlet-Neumann boundary value problems.References
- Calvin D. Ahlbrandt, Don B. Hinton, and Roger T. Lewis, Necessary and sufficient conditions for the discreteness of the spectrum of certain singular differential operators, Canadian J. Math. 33 (1981), no. 1, 229–246. MR 608867, DOI 10.4153/CJM-1981-019-1
- W. Allegretto, Nonoscillation theory of elliptic equations of order $2n$, Pacific J. Math. 64 (1976), no. 1, 1–16. MR 415044 N. Dunford and J. T. Schwartz, Linear operators. II, Interscience, New York, 1957.
- I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff; Israel Program for Scientific Translations, Jerusalem, 1965. MR 0190800
- Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252. MR 27925, DOI 10.1090/S0002-9947-1948-0027925-7
- Don B. Hinton and Roger T. Lewis, Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337–347. MR 367358, DOI 10.1017/S0305004100051161
- G. A. Kaljabin, A necessary and sufficient condition for the discreteness of the spectrum of a monomial operation in the matrix case, Differencial′nye Uravnenija 9 (1973), 951–954, 979 (Russian). MR 0322259
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
- Roger T. Lewis, The discreteness of the spectrum of self-adjoint, even order, one-term, differential operators, Proc. Amer. Math. Soc. 42 (1974), 480–482. MR 330608, DOI 10.1090/S0002-9939-1974-0330608-8
- Richard A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125–145. MR 68690
- John Piepenbrink, Integral inequalities and theorems of Liouville type, J. Math. Anal. Appl. 26 (1969), 630–639. MR 241798, DOI 10.1016/0022-247X(69)90202-9
- Franz Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Assisted by J. Berkowitz; With a preface by Jacob T. Schwartz. MR 0240668
- Martin Schechter, Spectra of partial differential operators, 2nd ed., North-Holland Series in Applied Mathematics and Mechanics, vol. 14, North-Holland Publishing Co., Amsterdam, 1986. MR 869254
- Martin Schechter, On the spectra of singular elliptic operators, Mathematika 23 (1976), no. 1, 107–115. MR 410115, DOI 10.1112/S0025579300006203
- R. E. Showalter, Hilbert space methods for partial differential equations, Monographs and Studies in Mathematics, Vol. 1, Pitman, London-San Francisco, Calif.-Melbourne, 1977. MR 0477394
- François Trèves, Basic linear partial differential equations, Pure and Applied Mathematics, Vol. 62, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0447753
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 271 (1982), 653-666
- MSC: Primary 35P05; Secondary 35J25, 47F05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0654855-X
- MathSciNet review: 654855