## Star-finite representations of measure spaces

HTML articles powered by AMS MathViewer

- by Robert M. Anderson
- Trans. Amer. Math. Soc.
**271**(1982), 667-687 - DOI: https://doi.org/10.1090/S0002-9947-1982-0654856-1
- PDF | Request permission

## Abstract:

In nonstandard analysis, $^{\ast }$-finite sets are infinite sets which nonetheless possess the formal properties of finite sets. They permit a synthesis of continuous and discrete theories in many areas of mathematics, including probability theory, functional analysis, and mathematical economics. $^{\ast }$-finite models are particularly useful in building new models of economic or probabilistic processes. It is natural to ask what standard models can be obtained from these $^{\ast }$-finite models. In this paper, we show that a rich class of measure spaces, including the Radon spaces, are measure-preserving images of $^{\ast }$-finite measure spaces, using a construction introduced by Peter A. Loeb [**15**]. Moreover, we show that a number of measure-theoretic constructs, including integrals and conditional expectations, are naturally expressed in these models. It follows that standard models which can be expressed in terms of these measure spaces and constructs can be obtained from $^{\ast }$-finite models.

## References

- Robert M. Anderson,
*A non-standard representation for Brownian motion and Itô integration*, Israel J. Math.**25**(1976), no. 1-2, 15–46. MR**464380**, DOI 10.1007/BF02756559
—, - Robert M. Anderson and Salim Rashid,
*A nonstandard characterization of weak convergence*, Proc. Amer. Math. Soc.**69**(1978), no. 2, 327–332. MR**480925**, DOI 10.1090/S0002-9939-1978-0480925-X - Allen R. Bernstein and Frank Wattenberg,
*Nonstandard measure theory*, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 171–185. MR**0247018** - Patrick Billingsley,
*Convergence of probability measures*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0233396** - Nelson Dunford and Jacob T. Schwartz,
*Linear operators. Part I*, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR**1009162** - Lester L. Helms,
*Mean convergence of martingales*, Trans. Amer. Math. Soc.**87**(1958), 439–446. MR**94841**, DOI 10.1090/S0002-9947-1958-0094841-0 - C. Ward Henson,
*On the nonstandard representation of measures*, Trans. Amer. Math. Soc.**172**(1972), 437–446. MR**315082**, DOI 10.1090/S0002-9947-1972-0315082-2 - Douglas N. Hoover,
*Probability logic*, Ann. Math. Logic**14**(1978), no. 3, 287–313. MR**510234**, DOI 10.1016/0003-4843(78)90022-0 - H. Jerome Keisler,
*Hyperfinite model theory*, Logic Colloquium 76 (Oxford, 1976) Studies in Logic and the Foundations of Mathematics, Vol. 87, North-Holland, Amsterdam, 1977, pp. 5–110. MR**0491155** - Peter A. Loeb,
*A nonstandard representation of measurable spaces and $L_{\infty }$*, Bull. Amer. Math. Soc.**77**(1971), 540–544. MR**276748**, DOI 10.1090/S0002-9904-1971-12745-3
—, - Albert Hurd and Peter Loeb (eds.),
*Victoria Symposium on Nonstandard Analysis*, Lecture Notes in Mathematics, Vol. 369, Springer-Verlag, Berlin-New York, 1974. Held at the University of Victoria, Victoria, B. C., 8–11 May 1972. MR**0472459** - Peter A. Loeb,
*Conversion from nonstandard to standard measure spaces and applications in probability theory*, Trans. Amer. Math. Soc.**211**(1975), 113–122. MR**390154**, DOI 10.1090/S0002-9947-1975-0390154-8 - Peter A. Loeb,
*Applications of nonstandard analysis to ideal boundaries in potential theory*, Israel J. Math.**25**(1976), no. 1-2, 154–187. MR**457757**, DOI 10.1007/BF02756567 - W. A. J. Luxemburg,
*A general theory of monads*, Applications of Model Theory to Algebra, Analysis, and Probability (Internat. Sympos., Pasadena, Calif., 1967) Holt, Rinehart and Winston, New York, 1969, pp. 18–86. MR**0244931** - Moshé Machover and Joram Hirschfeld,
*Lectures on non-standard analysis*, Lecture Notes in Mathematics, Vol. 94, Springer-Verlag, Berlin-New York, 1969. MR**0249285** - R. Parikh and M. Parnes,
*Conditional probability can be defined for all pairs of sets of reals*, Advances in Math.**9**(1972), 313–315. MR**324736**, DOI 10.1016/0001-8708(72)90022-9 - Rohit Parikh and Milton Parnes,
*Conditional probabilities and uniform sets*, Victoria Symposium on Nonstandard Analysis (Univ. Victoria, Victoria, B.C., 1972) Lecture Notes in Math., Vol. 369, Springer, Berlin, 1974, pp. 180–194. MR**0482898**
Salim Rashid, - Abraham Robinson,
*Non-standard analysis*, North-Holland Publishing Co., Amsterdam, 1966. MR**0205854** - Walter Rudin,
*Real and complex analysis*, 2nd ed., McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR**0344043** - K. D. Stroyan and W. A. J. Luxemburg,
*Introduction to the theory of infinitesimals*, Pure and Applied Mathematics, No. 72, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR**0491163** - Douglas N. Hoover and Edwin Perkins,
*Nonstandard construction of the stochastic integral and applications to stochastic differential equations. I, II*, Trans. Amer. Math. Soc.**275**(1983), no. 1, 1–36, 37–58. MR**678335**, DOI 10.1090/S0002-9947-1983-0678335-1 - Tom L. Lindstrøm,
*Hyperfinite stochastic integration. I. The nonstandard theory*, Math. Scand.**46**(1980), no. 2, 265–292. MR**591606**, DOI 10.7146/math.scand.a-11868 - Peter A. Loeb,
*Weak limits of measures and the standard part map*, Proc. Amer. Math. Soc.**77**(1979), no. 1, 128–135. MR**539645**, DOI 10.1090/S0002-9939-1979-0539645-6 - Peter A. Loeb,
*An introduction to nonstandard analysis and hyperfinite probability theory*, Probabilistic analysis and related topics, Vol. 2, Academic Press, New York-London, 1979, pp. 105–142. MR**556680** - Frank Wattenberg,
*Nonstandard measure theory: avoiding pathological sets*, Trans. Amer. Math. Soc.**250**(1979), 357–368. MR**530061**, DOI 10.1090/S0002-9947-1979-0530061-4

*Star-finite probability theory*, Ph.D. Dissertation, Yale Univ., New Haven, Conn., 1977. —,

*Strong core theorems with nonconvex preferences*, Cowles Foundation Discussion Paper No. 590, Yale Univ., New Haven, Conn., 1981.

*A nonstandard representation of measurable spaces*, ${L_\infty }$,

*and*$L_\infty ^{\ast }$, Contributions to Non-standard Analysis (W. A. J. Luxemburg and A. Robinson, editors), North-Holland, Amsterdam, 1972, pp. 65-80.

*Economies with infinitely many traders*, Ph.D. Dissertation, Yale Univ., New Haven, Ct., 1976.

## Bibliographic Information

- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**271**(1982), 667-687 - MSC: Primary 03H05; Secondary 28D05, 60A10
- DOI: https://doi.org/10.1090/S0002-9947-1982-0654856-1
- MathSciNet review: 654856