Finite groups containing an intrinsic $2$-component of Chevalley type over a field of odd order
HTML articles powered by AMS MathViewer
- by Morton E. Harris
- Trans. Amer. Math. Soc. 272 (1982), 1-65
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656480-3
- PDF | Request permission
Abstract:
This paper extends the celebrated theorem of Aschbacher that classifies all finite simple groups $G$ containing a subgroup $L \cong {\text {SL}}(2,q)$, $q$ odd, such that $L$ is subnormal in the centralizer in $G$ of its unique involution. Under the same embedding assumptions, the main result of this work allows $L$ to be almost any Chevalley group over a field of odd order and determines the resulting simple groups $G$. The results of this paper are an essential ingredient in the current classification of all finite simple groups. Major sections are devoted to deriving various properties of Chevalley groups that are required in the proofs of the three theorems of this paper. These sections are of some independent interest.References
- Michael Aschbacher, $2$-components in finite groups, Comm. Algebra 3 (1975), no. 10, 901–911. MR 414686, DOI 10.1080/00927877508822079
- Michael Aschbacher, On finite groups of component type, Illinois J. Math. 19 (1975), 87–115. MR 376843
- Michael Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math. (2) 106 (1977), no. 2, 353–398. MR 498828, DOI 10.2307/1971100
- Michael Aschbacher and Gray M. Seitz, On groups with a standard component of known type, Osaka Math. J. 13 (1976), no. 3, 439–482. MR 435200
- Helmut Bender, On groups with abelian Sylow $2$-subgroups, Math. Z. 117 (1970), 164–176. MR 288180, DOI 10.1007/BF01109839
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Armand Borel, Properties and linear representations of Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 1–55. MR 0258838
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- N. Burgoyne, Finite groups with Chevalley-type components, Pacific J. Math. 72 (1977), no. 2, 341–350. MR 457550
- N. Burgoyne and C. Williamson, Semi-simple classes in Chevalley type groups, Pacific J. Math. 70 (1977), no. 1, 83–100. MR 507018
- Roger W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, Vol. 28, John Wiley & Sons, London-New York-Sydney, 1972. MR 0407163
- Jean A. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5, Springer-Verlag, Berlin-New York, 1971 (French). Troisième édition. MR 0310083
- Walter Feit, The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 55–93. MR 0427449
- Paul Fong and W. J. Wong, A characterization of the finite simple groups $\textrm {PSp} (4,q)$, $G_{2}(q)$, $D_{4}{}^{2}(q)$. I, Nagoya Math. J. 36 (1969), 143–184. MR 255666
- George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403–420. MR 202822, DOI 10.1016/0021-8693(66)90030-5
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284–319. MR 292927, DOI 10.1016/0021-8693(72)90060-9
- Daniel Gorenstein and John H. Walter, Balance and generation in finite groups, J. Algebra 33 (1975), 224–287. MR 357583, DOI 10.1016/0021-8693(75)90123-4
- Robert L. Griess Jr., Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 78 (1972), 68–71. MR 289635, DOI 10.1090/S0002-9904-1972-12855-6
- Morton E. Harris, Finite groups with Sylow $2$-subgroups of type $PS\textrm {p}(6, q), q$ odd, Comm. Algebra 2 (1974), 181–232. MR 409647, DOI 10.1080/00927877408822010
- Morton E. Harris, A universal mapping problem, covering groups and automorphism groups of finite groups, Rocky Mountain J. Math. 7 (1977), no. 2, 289–295. MR 439936, DOI 10.1216/RMJ-1977-7-2-289
- Morton E. Harris, A note on $2$-components of finite groups, Arch. Math. (Basel) 28 (1977), no. 2, 130–132. MR 576564, DOI 10.1007/BF01223901
- Morton E. Harris, A note on solvable $2$-components of finite groups, Arch. Math. (Basel) 29 (1977), no. 4, 344–348. MR 480723, DOI 10.1007/BF01220416 —, Finite groups containing an intrinsic $2$-component of symplectic type, unpublished.
- Morton E. Harris, A note on the classical linear groups over finite fields, Rev. Roumaine Math. Pures Appl. 27 (1982), no. 2, 159–167. MR 669181
- Morton E. Harris, $\textrm {PSL}(2,\,q)$ type $2$-components and the unbalanced group conjecture, J. Algebra 68 (1981), no. 1, 190–235. MR 604303, DOI 10.1016/0021-8693(81)90294-5
- Morton E. Harris and Ronald Solomon, Finite groups having an involution centralizer with a $2$-component of dihedral type. I, Illinois J. Math. 21 (1977), no. 3, 575–620. MR 480719
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703 —, Geometric algebra, University of Illinois at Chicago Circle Lecture Notes, 1970.
- Nagayoshi Iwahori, Centralizers of involutions in finite Chevalley groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 267–295. MR 0258945
- Rimhak Ree, A family of simple groups associated with the simple Lie algebra of type $(G_{2})$, Amer. J. Math. 83 (1961), 432–462. MR 138680, DOI 10.2307/2372888
- Ronald Solomon, Finite groups with Sylow $2$-subgroups of type $3$, J. Algebra 28 (1974), 182–198. MR 344338, DOI 10.1016/0021-8693(74)90031-3
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, Conn., 1968. Notes prepared by John Faulkner and Robert Wilson. MR 0466335
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- Robert Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR 0352279 J. G. Thompson, Notes on the $B$-conjecture, unpublished. J. H. Walter, Characterization of Chevalley groups. I. Finite groups, Sapporo and Kyoto, 1974, Japan Society for the Promotion of Science, Tokyo, 1976. —, Characterization of Chevalley groups, preprint.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 1-65
- MSC: Primary 20D05
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656480-3
- MathSciNet review: 656480