A projective description of weighted inductive limits
HTML articles powered by AMS MathViewer
- by Klaus-D. Bierstedt, Reinhold Meise and William H. Summers
- Trans. Amer. Math. Soc. 272 (1982), 107-160
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656483-9
- PDF | Request permission
Abstract:
Considering countable locally convex inductive limits of weighted spaces of continuous functions, if $\mathcal {V} = {\{ {V_n}\} _n}$ is a decreasing sequence of systems of weights on a locally compact Hausdorff space $X$, we prove that the topology of ${\mathcal {V}_0}C(X) = {\text {in}}{{\text {d}}_{n \to }}C{({V_n})_0}(X)$ can always be described by an associated system $\overline V = {\overline V _\mathcal {V}}$ of weights on $X$; the continuous seminorms on ${\mathcal {V}_0}C(X)$ are characterized as weighted supremum norms. If $\mathcal {V} = {\{ {\upsilon _n}\} _n}$ is a sequence of continuous weights on $X$, a condition is derived in terms of $\mathcal {V}$ which is both necessary and sufficient for the completeness (respectively, regularity) of the $(LB)$-space ${\mathcal {V}_0}C(X)$, and which is also equivalent to ${\mathcal {V}_0}C(X)$ agreeing algebraically and topologically with the associated weighted space $C{\overline V _0}(X)$; for sequence spaces, this condition is the same as requiring that the corresponding echelon space be quasi-normable. A number of consequences follow. As our main application, in the case of weighted inductive limits of holomorphic functions, we obtain, using purely functional analytic methods, a considerable extension of a theorem due to B. A. Taylor [37] which is useful in connection with analytically uniform spaces and convolution equations. The projective description of weighted inductive limits also serves to improve upon existing tensor and slice product representations. Most of our work is in the context of spaces of scalar or Banach space valued functions, but, additionally, some results for spaces of functions with range in certain $(LB)$-spaces are mentioned.References
- Albert Baernstein II, Representation of holomorphic functions by boundary integrals, Trans. Amer. Math. Soc. 160 (1971), 27–37. MR 283182, DOI 10.1090/S0002-9947-1971-0283182-0
- Carlos A. Berenstein and Milos A. Dostal, Analytically uniform spaces and their applications to convolution equations, Lecture Notes in Mathematics, Vol. 256, Springer-Verlag, Berlin-New York, 1972. MR 0493316
- Klaus-Dieter Bierstedt, Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. I, J. Reine Angew. Math. 259 (1973), 186–210 (German). MR 318871, DOI 10.1515/crll.1973.259.186
- Klaus-Dieter Bierstedt, Injektive Tensorprodukte und Slice-Produkte gewichteter Räume stetiger Funktionen, J. Reine Angew. Math. 266 (1974), 121–131 (German). MR 344859, DOI 10.1515/crll.1974.266.121
- Klaus-D. Bierstedt, The approximation property for weighted function spaces, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974) Bonn. Math. Schriften, No. 81, Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 3–25. MR 0493282
- Klaus-Dieter Bierstedt and Reinhold Meise, Bemerkungen über die Approximations-eigenschaft lokalkonvexer Funktionenräume, Math. Ann. 209 (1974), 99–107 (German). MR 355558, DOI 10.1007/BF01351314
- Klaus-Dieter Bierstedt and Reinhold Meise, Induktive Limites gewichteter Räume stetiger und holomorpher Funktionen, J. Reine Angew. Math. 282 (1976), 186–220 (German). MR 458142
- K.-D. Bierstedt, B. Gramsch, and R. Meise, Lokalkonvexe Garben und gewichtete induktive Limites ${\mathfrak {F}}$-morpher Funktionen, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974) Bonn. Math. Schriften, No. 81, Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 59–72 (German). MR 0500127
- Seán Dineen, Holomorphic functions on strong duals of Fréchet-Montel spaces, Infinite dimensional holomorphy and applications (Proc. Internat. Sympos., Univ. Estadual de Campinas, São Paulo, 1975) North-Holland Math. Studies, Vol. 12; Notas de Mat., No. 54, North-Holland, Amsterdam, 1977, pp. 147–166. MR 0493332
- Seán Dineen, Holomorphic germs on compact subsets of locally convex spaces, Functional analysis, holomorphy, and approximation theory (Proc. Sem., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1978) Lecture Notes in Math., vol. 843, Springer, Berlin, 1981, pp. 247–263. MR 610833
- Leon Ehrenpreis, Fourier analysis in several complex variables, Pure and Applied Mathematics, Vol. XVII, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1970. MR 0285849
- Jean Pierre Ferrier, Spectral theory and complex analysis, North-Holland Mathematics Studies, No. 4, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973. MR 0352960
- Klaus Floret, Lokalkonvexe Sequenzen mit kompakten Abbildungen, J. Reine Angew. Math. 247 (1971), 155–195 (German). MR 287271, DOI 10.1515/crll.1971.247.155
- Alain Goullet de Rugy, Espaces de fonctions pondérables, Israel J. Math. 12 (1972), 147–160 (French, with English summary). MR 324386, DOI 10.1007/BF02764659
- Alexandre Grothendieck, Sur les espaces ($F$) et ($DF$), Summa Brasil. Math. 3 (1954), 57–123 (French). MR 75542
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539 O. v. Grudzinski, Convolutions-Gleichungen in Räumen von Beurling-Distributionen endlicher Ordnung, Habilitationsschrift, Kiel, 1980.
- Sönke Hansen, On the “fundamental principle” of L. Ehrenpreis, Partial differential equations (Warsaw, 1978) Banach Center Publ., vol. 10, PWN, Warsaw, 1983, pp. 185–201. MR 737222
- Sönke Hansen, Localizable analytically uniform spaces and the fundamental principle, Trans. Amer. Math. Soc. 264 (1981), no. 1, 235–250. MR 597879, DOI 10.1090/S0002-9947-1981-0597879-2
- Ralf Hollstein, Inductive limits and $\varepsilon$-tensor products, J. Reine Angew. Math. 319 (1980), 38–62. MR 586114, DOI 10.1515/crll.1980.319.38 J. Horváth, Topological vector spaces and distributions. I, Addison-Wesley, Reading, Mass., 1966.
- Gert Kleinstück, Duals of weighted spaces of continuous functions, Function spaces and dense approximation (Proc. Conf., Univ. Bonn, Bonn, 1974) Bonn. Math. Schriften, No. 81, Inst. Angew. Math., Univ. Bonn, Bonn, 1975, pp. 98–114. MR 0467266
- Gottfried Köthe, Topological vector spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling. MR 0248498
- Reinhold Meise, Räume holomorpher Vektorfunktionen mit Wachstumsbedingungen und topologische Tensorprodukte, Math. Ann. 199 (1972), 293–312 (German). MR 341046, DOI 10.1007/BF01431482
- Hermann Neus, Über die Regularitätsbegriffe induktiver lokalkonvexer Sequenzen, Manuscripta Math. 25 (1978), no. 2, 135–145 (German, with English summary). MR 482036, DOI 10.1007/BF01168605
- Bent E. Petersen, Holomorphic functions with growth conditions, Trans. Amer. Math. Soc. 206 (1975), 395–406. MR 379879, DOI 10.1090/S0002-9947-1975-0379879-8
- João Prolla, The approximation property for Nachbin spaces, Approximation theory and functional analysis (Proc. Internat. Sympos. Approximation Theory, Univ. Estadual de Campinas, Campinas, 1977) North-Holland Math. Stud., vol. 35, North-Holland, Amsterdam-New York, 1979, pp. 371–382. MR 553428
- D. A. Raĭkov, A criterion of completeness of locally convex spaces, Uspehi Mat. Nauk 14 (1959), no. 1 (85), 223–229 (Russian). MR 0105000
- Jean Schmets, Espaces de fonctions continues, Lecture Notes in Mathematics, Vol. 519, Springer-Verlag, Berlin-New York, 1976 (French). MR 0423058
- Laurent Schwartz, Espaces de fonctions différentiables à valeurs vectorielles, J. Analyse Math. 4 (1954/55), 88–148 (French). MR 80268, DOI 10.1007/BF02787718
- Laurent Schwartz, Théorie des distributions à valeurs vectorielles. I, Ann. Inst. Fourier (Grenoble) 7 (1957), 1–141 (French). MR 107812
- Claude Servien, Sur la topologie d’un espace de fonctions entières avec poids, Séminaire Pierre Lelong (Analyse), Année 1974/75, Lecture Notes in Math., Vol. 524, Springer, Berlin, 1976, pp. 90–95 (French). MR 0425592 W. H. Summers, Weighted locally convex spaces of continuous functions, Ph. D. Dissertation, Louisiana State University, Baton Rouge, 1968.
- W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121–131. MR 251521, DOI 10.1090/S0002-9947-1969-0251521-3
- W. H. Summers, Dual spaces of weighted spaces, Trans. Amer. Math. Soc. 151 (1970), 323–333. MR 270129, DOI 10.1090/S0002-9947-1970-0270129-5
- B. A. Taylor, The fields of quotients of some rings of entire functions, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 468–474. MR 0240329
- B. A. Taylor, A seminorm topology for some $(\textrm {DF})$-spaces of entire functions, Duke Math. J. 38 (1971), 379–385. MR 277734
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 107-160
- MSC: Primary 46E10; Secondary 30H05, 46A12
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656483-9
- MathSciNet review: 656483