Holomorphic curves in Lorentzian CR-manifolds
HTML articles powered by AMS MathViewer
- by Robert L. Bryant
- Trans. Amer. Math. Soc. 272 (1982), 203-221
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656486-4
- PDF | Request permission
Abstract:
A CR-manifold is said to be Lorentzian if its Levi form has one negative eigenvalue and the rest positive. In this case, it is possible that the CR-manifold contains holomorphic curves. In this paper, necessary and sufficient conditions are derived (in terms of the "derivatives" of the CR-structure) in order that holomorphic curves exist. A "flatness" theorem is proven characterizing the real Lorentzian hyperquadric ${Q_5} \subseteq {\mathbf {C}}{P^3}$, and examples are given showing that nonflat Lorentzian hyperquadrics can have a richer family of holomorphic curves than the flat ones.References
- Bryant, S. S. Chern and P. A. Griffiths, Notes on exterior differential systems, Proc. 1980 Peking Symposium on Differential Equations, Peking University, 1980.
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294 Cartan, "Le calcul de variations et certaines familles de courbes" in Oeuvres, Vol. II, Gauthier-Villars, Paris, 1983, pp. 1011-1034.
- Shiing Shen Chern, Complex manifolds without potential theory, 2nd ed., Universitext, Springer-Verlag, New York-Heidelberg, 1979. With an appendix on the geometry of characteristic classes. MR 533884
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- P. Griffiths, On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J. 41 (1974), 775–814. MR 410607 B. Lawson, Jr., Minimal varieties in constant curvature manifolds, Ph.D. Thesis, Stanford, Calif., 1968. Nirenberg, On a question of Hans Lewy, Uspehi Mat. Nauk 29 (1965), 251-262.
- R. Penrose, Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366. MR 216828, DOI 10.1063/1.1705200
- Friedrich Sommer, Komplex-analytische Blätterung reeler Hyperflächen im $C^{n}$, Math. Ann. 137 (1959), 392–411 (German). MR 108821, DOI 10.1007/BF01360840
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 203-221
- MSC: Primary 32F25; Secondary 53C40
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656486-4
- MathSciNet review: 656486