Nonseparability of quotient spaces of function algebras on topological semigroups
HTML articles powered by AMS MathViewer
- by Heneri A. M. Dzinotyiweyi
- Trans. Amer. Math. Soc. 272 (1982), 223-235
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656487-6
- PDF | Request permission
Abstract:
Let $S$ be a topological semigroup, $C(S)$ the space of all bounded real-valued continuous functions on $S$. We define $WUC(S)$ the subspace of $C(S)$ consisting of all weakly uniformly continuous functions and $WAP(S)$ the space of all weakly almost periodic functions in $C(S)$. Among other results, for a large class of topological semigroups $S$, for which noncompact locally compact topological groups are a very special case, we prove that the quotient spaces $WUC(S)/WAP(S)$ and, for nondiscrete $S$, $C(S)/WUC(S)$ are nonseparable. (The actual setting of these results is more general.) For locally compact topological groups, parts of our results answer affirmatively certain questions raised earlier by Ching Chou and E. E. Granirer.References
- Anne C. Baker and J. W. Baker, Algebras of measures on a locally compact semigroup. III, J. London Math. Soc. (2) 4 (1972), 685–695. MR 306806, DOI 10.1112/jlms/s2-4.4.685
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Ching Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc. 206 (1975), 175–200. MR 394062, DOI 10.1090/S0002-9947-1975-0394062-8
- H. A. M. Dzinotyiweyi, Algebras of measures on $C$-distinguished topological semigroups, Math. Proc. Cambridge Philos. Soc. 84 (1978), no. 2, 323–336. MR 493158, DOI 10.1017/S0305004100055146
- Heneri A. M. Dzinotyiweyi, Weakly almost periodic functions and the irregularity of multiplication in semigroup algebras, Math. Scand. 46 (1980), no. 1, 157–172. MR 585239, DOI 10.7146/math.scand.a-11859
- Heneri A. M. Dzinotyiweyi, Continuity of semigroup actions on normed linear spaces, Quart. J. Math. Oxford Ser. (2) 31 (1980), no. 124, 415–421. MR 596977, DOI 10.1093/qmath/31.4.415
- Edmond E. Granirer, Exposed points of convex sets and weak sequential convergence, Memoirs of the American Mathematical Society, No. 123, American Mathematical Society, Providence, R.I., 1972. Applications to invariant means, to existence of invariant measures for a semigroup of Markov operators etc. . MR 0365090
- Edmond E. Granirer, Weakly almost periodic and uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371–382. MR 336241, DOI 10.1090/S0002-9947-1974-0336241-0
- A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168–186 (French). MR 47313, DOI 10.2307/2372076 E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, Springer-Verlag, Berlin and New York, 1963.
- Gerald L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups, Pacific J. Math. 54 (1974), no. 2, 115–125. MR 372114
- J. M. Kister, Uniform continuity and compactness in topological groups, Proc. Amer. Math. Soc. 13 (1962), 37–40. MR 133392, DOI 10.1090/S0002-9939-1962-0133392-8
- Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. MR 270356
- Gèrard L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. (3) 37 (1978), no. 1, 75–97. MR 499939, DOI 10.1112/plms/s3-37.1.75
- Gèrard L. G. Sleijpen, Locally compact semigroups and continuous translations of measures, Proc. London Math. Soc. (3) 37 (1978), no. 1, 75–97. MR 499939, DOI 10.1112/plms/s3-37.1.75
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 223-235
- MSC: Primary 43A60; Secondary 22A20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656487-6
- MathSciNet review: 656487