The restriction of admissible modules to parabolic subalgebras
HTML articles powered by AMS MathViewer
- by J. T. Stafford and N. R. Wallach
- Trans. Amer. Math. Soc. 272 (1982), 333-350
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656493-1
- PDF | Request permission
Abstract:
This paper studies algebraic versions of Casselman’s subrepresentation theorem. Let $\mathfrak {g}$ be a semisimple Lie algebra over an algebraically closed field $F$ of characteristic zero and $\mathfrak {g} = \mathfrak {k} \oplus \mathfrak {a} \oplus \mathfrak {n}$ be an Iwasawa decomposition for $\mathfrak {g}$. Then $(\mathfrak {g},\mathfrak {k})$ is said to satisfy property $(\mathfrak {n})$ if $M \ne M$ for every admissible $(\mathfrak {g},\mathfrak {k})$-module $M$. We prove that, if $(\mathfrak {g},\mathfrak {k})$ satisfies property $(\mathfrak {n})$, then $\mathfrak {n}N \ne N$ whenever $N$ is a $(\mathfrak {g},\mathfrak {k})$-module with $\dim N < \operatorname {card} F$. This is then used to show (purely algebraically) that $(\mathfrak {s}l(n,F),\mathfrak {s}o(n,F))$ satisfies property $(\mathfrak {n})$. The subrepresentation theorem for $\mathfrak {s}l(n)$ is an easy consequence of this.References
- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
- William Casselman and M. Scott Osborne, The restriction of admissible representations to ${\mathfrak {n}}$, Math. Ann. 233 (1978), no. 3, 193–198. MR 480884, DOI 10.1007/BF01405350
- Jacques Dixmier, Algèbres enveloppantes, Cahiers Scientifiques, Fasc. XXXVII, Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974 (French). MR 0498737
- Bertram Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), no. 2, 101–184. MR 507800, DOI 10.1007/BF01390249
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1–44. MR 346093, DOI 10.1090/S0002-9947-1973-0346093-X
- J. Lepowsky, Conical vectors in induced modules, Trans. Amer. Math. Soc. 208 (1975), 219–272. MR 376786, DOI 10.1090/S0002-9947-1975-0376786-1 J. C. McConnell, Localization in enveloping rings, J. London Math. Soc. 43 (1968), 421-428; (2) 3 (1971), 409-410. D. Miličić, Notes on asymptotics of admissible representations of semi-simple Lie groups, Institute for Advanced Study, Princeton, N.J., 1976. G. Warner, Harmonic analysis on semisimple Lie groups. I, Die Grundlehren Math. Wissenschaften, Band 188, Springer-Verlag, Berlin, 1972.
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 333-350
- MSC: Primary 17B10; Secondary 17B20
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656493-1
- MathSciNet review: 656493