Levi geometry and the tangential Cauchy-Riemann equations on a real analytic submanifold of $\textbf {C}^{n}$
HTML articles powered by AMS MathViewer
- by Al Boggess
- Trans. Amer. Math. Soc. 272 (1982), 351-374
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656494-3
- PDF | Request permission
Abstract:
The relationship between the Levi geometry of a submanifold of ${{\mathbf {C}}^n}$ and the tangential Cauchy-Riemann equations is studied. On a real analytic codimension two submanifold of ${{\mathbf {C}}^n}$, we find conditions on the Levi algebra which allow us to locally solve the tangential Cauchy-Riemann equations (in most bidegrees) with kernels. Under the same conditions, we show that, locally, any CR-function is the boundary value jump of a holomorphic function defined on some suitable open set in ${{\mathbf {C}}^n}$. This boundary value jump result is the best possible result because we also show that there is no one-sided extension theory for such submanifolds of ${{\mathbf {C}}^n}$. In fact, we show that if $S$ is a real analytic, generic, submanifold of ${{\mathbf {C}}^n}$ (any codimension) where the excess dimension of the Levi algebra is less than the real codimension, then $S$ is not extendible to any open set in ${{\mathbf {C}}^n}$.References
- Al Boggess, Kernels for the tangential Cauchy-Riemann equations, Trans. Amer. Math. Soc. 262 (1980), no. 1, 1–49. MR 583846, DOI 10.1090/S0002-9947-1980-0583846-0 E. Cartan, Les systèmes différentiels extérieurs et leurs applications géométriques, Hermann, Paris, 1945.
- Harley Flanders, Differential forms with applications to the physical sciences, Academic Press, New York-London, 1963. MR 0162198
- Robert B. Gardner, Invariants of Pfaffian systems, Trans. Amer. Math. Soc. 126 (1967), 514–533. MR 211352, DOI 10.1090/S0002-9947-1967-0211352-5
- S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 275–314. MR 237816
- G. M. Henkin, H. Lewy’s equation and analysis on pseudoconvex manifolds, Uspehi Mat. Nauk 32 (1977), no. 3(195), 57–118, 247 (Russian). MR 0454067
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075 R. Harvey and J. Polking, Fundamental solutions in complex analysis. I, II, Duke Math. J. 46 (1979), 253-300, 301-340. C. D. Hill and G. Taiani, Families of analytic discs in ${{\mathbf {C}}^n}$ with boundaries on a prescribed $CR$-submanifold (preprint).
- L. R. Hunt and R. O. Wells Jr., Extensions of CR-functions, Amer. J. Math. 98 (1976), no. 3, 805–820. MR 432913, DOI 10.2307/2373816
- Ricardo Nirenberg, On the H. Lewy extension phenomenon, Trans. Amer. Math. Soc. 168 (1972), 337–356. MR 301234, DOI 10.1090/S0002-9947-1972-0301234-4
- Ricardo Nirenberg and R. O. Wells Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15–35. MR 245834, DOI 10.1090/S0002-9947-1969-0245834-9
- Giuseppe Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d’una varietà complessa, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 31–43 (Italian). MR 206992
- R. O. Wells Jr., Holomorphic hulls and holomorphic convexity of differentiable submanifolds, Trans. Amer. Math. Soc. 132 (1968), 245–262. MR 222340, DOI 10.1090/S0002-9947-1968-0222340-8
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 351-374
- MSC: Primary 32F20; Secondary 32F25, 35N15
- DOI: https://doi.org/10.1090/S0002-9947-1982-0656494-3
- MathSciNet review: 656494