On weighted norm inequalities for the Hilbert transform of functions with moments zero
HTML articles powered by AMS MathViewer
- by Ernst Adams
- Trans. Amer. Math. Soc. 272 (1982), 487-500
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662048-5
- PDF | Request permission
Abstract:
Let $\tilde f$ denote the Hilbert transform of $f$, i.e. \[ \tilde f(x) = {\rm {p}}{\rm {.v}}{\rm {.}}\int {\frac {{f(t)}}{{x - t}}dt} \] and let $1 < p < \infty$. A weight function $w$ is shown to satisfy \[ \int {|\tilde f(x)} {|^p}w(x)dx \le C{\int {|f(x)|} ^p}w(x)dx\] for all $f$ with the first $N$ moments zero, if and only if it is of the form $w(x) = |q(x){|^p}U(x)$, where $q$ is a polynomial of degree at most $N$ and $U \in {A_p}$.References
- Rodrigo Arocena, Mischa Cotlar, and Cora Sadosky, Weighted inequalities in $L^{2}$ and lifting properties, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York-London, 1981, pp. 95–128. MR 634237
- A. Beurling and P. Malliavin, On Fourier transforms of measures with compact support, Acta Math. 107 (1962), 291–309. MR 147848, DOI 10.1007/BF02545792
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- Henry Helson and Donald Sarason, Past and future, Math. Scand. 21 (1967), 5–16 (1968). MR 236989, DOI 10.7146/math.scand.a-10840
- Henry Helson and Gabor Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107–138. MR 121608, DOI 10.1007/BF02410947
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Benjamin Muckenhoupt, Richard L. Wheeden, and Wo-Sang Young, $L^{2}$ multipliers with power weights, Adv. in Math. 49 (1983), no. 2, 170–216. MR 714588, DOI 10.1016/0001-8708(83)90072-5 —, Weighted $L^p$ multipliers (to appear). J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces (to appear). J.-O. Strömberg and R. Wheeden, Relations between $H_u^{p}$ and $L_u^{p}$ with polynomial weights (to appear).
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 272 (1982), 487-500
- MSC: Primary 44A15; Secondary 42A50
- DOI: https://doi.org/10.1090/S0002-9947-1982-0662048-5
- MathSciNet review: 662048